Changes in the gut bacteria composition associated with metabolic syndrome*

Authors

  • Anna Kotrova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Alexandr Shishkin St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation ; St. Petersburg Research Institute of Phthisiopulmonology, Health Ministry of Russia, 2–4, Ligovskiy pr., St. Petersburg, 191036, Russian Federation
  • Ivan Pchelin St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Natalia Hudiakova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Nikita Gladyshev St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Elena Ermolenko Institute of Experimental Medicine, 12, ul. Akademika Pavlova, St Petersburg, 197376, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2022.102

Abstract

Obesity, arterial hypertension, disorders of carbohydrate and lipid metabolism, which form the metabolic syndrome, remain the leading risk factors for the development of cardiovascular complications and oncological diseases. Overnutrition and a sedentary lifestyle leading to the metabolic syndrome formation are also interconnected with another potential pathogenetic factor of obesity, the gut microbiota. The study of its composition, as well as its metabolites, can serve as a basis for predicting metabolic disorders and for the development of an integrated approach to the metabolic syndrome treatment using probiotic therapy. The clinical assessment of the gut microbiota composition in patients with MS was carried out to identify bacterial taxa potentially associated with the development of MS. Materials (feces) were collected from 113 patients: the first group (n = 59) consisted of overweight patients (body mass index > 25.0) with metabolic disorders in the form of lipid and/or carbohydrate disorders (the average age 44 years). The control group (n = 54) consisted of patients with normal body weight (18.5 < body mass index < 25.0), without metabolic disorders, without arterial hypertension (the average age — 38 years). Fecal samples from patients were studied using 16S rRNA gene sequencing on the Illumina platform (MiSeq sequencer). The CDHIT-OTU-Miseq program was used to search for taxonomic units. Deoxyribonucleic acid libraries were prepared using the Illumina Nextera sample preparation kit with deoxyribonucleic acid primers corresponding to the V3–V4 regions of the 16S rRNA gene. In the gut microbiota composition of patients with metabolic syndrome we can highlight the phylum Actinobacteria, its 2 genera Actynomyces spp. and Bifidobacterium spp., as well as the genus Prevotella spp. and the class Gammaproteobacteria. It is assumed that bacterial species belonging to these type, class, and genera can be considered as potential marker bacteria of the metabolic syndrome.

Keywords:

gut microbiota, metabolic syndrome, obesity, 16s rRNA, Actinobacteria, Bifidobacterium

Downloads

Download data is not yet available.
 

References


References

Nolan P. B., Carrick-Ranson G., Stinear J. W., Reading S. A., Dalleck L. C. Prevalence of Metabolic Syndrome and Metabolic Syndrome Components in Young Adults: A Pooled Analysis. Preventive Medicine Reports, 2017, vol. 7, pp. 211–215; https://doi.org/10.1016/j.pmedr.2017.07.004

Shlyakhto E. V., Nedogoda S. V., Konradi A. O. Diagnostics, treatment and prevention of obesity and associated diseases (National Clinical Recommendations). St Petersburg, 2017, 164 p. (In Russian)

Mychka V. B., Vertkin A. L., Vardaev L. I., Druzhilov M. A., Ipatkin R. V., Kalinkin A. L., Kuznecova I. V., Kuznecova T. Yu., Mekhtiev S. N., Morgunov Yu. L., Miller A. M., Mamedov M. N., Osipova I. V., Pushkar’ D. Yu., Tapil’skaya N. I., Titarenko V. L., CHumakova G. A., Shchekotov V. V., Aganezova N. V., Ametov A. S., Antropova O. N., Balan V. E., Bogachev R. S., Demidova T. Yu., Drapkina O. M., Lucevich O. E., Naumov A. V., Oganov R. G., Pacenko M. B., Pyrikova N. V., Sigal A. S., Salov I. A., Smetnik V. P., Tebloev K. I., Tolstov S. N., Ul’rih E. A., Fisun A. Ya., Yureneva S. V., Yashkov Yu. I. Experts’ consensus on the interdisciplinary approach towards the management, diagnostics, and treatment of patients with metabolic syndrome. Kardiovaskuliarnaia terapiia i profilaktika, 2013, vol. 12, no. 6, pp. 41–82. (In Russian)

Shenderov B. A. Medical microbial ecology: some of the outcomes and perspective of studies. Vestnik Rossiiskoi Akademii meditsinskih nauk, 2005, vol. 12, pp. 13–17. (In Russian)

Ardatskaya M. D., Minushkin O. N. Gut dysbacteriosis: the evolution of perspectives. Modern principles of diagnosis and pharmacological correction. Consilium Medicum. Prilozhenie “Gastroenterologiia”,2006, vol. 8, no. 2, pp. 4–18.

Grinevich V. B., Zaharchenko M. M. Modern concept of human gut microbiocenosis and ways of its disorders correction. Novye Sankt-Peterburgskiie vrachebnie vedomosti, 2003, vol. 3, pp. 13–20. (In Russian)

Cani P. D., Delzenne N. M. The role of the gut microbiota in energy metabolism and metabolic disease.Current Pharmaceutical Design, 2009, vol. 15, no. 13, pp. 1546–1558.

Tilg H., Moschen A. R., Kaser A. Obesity and the Microbiota. Gastroenterology, 2009, vol. 136, no. 5,pp. 1476–1483.

Tsukumo D. M., Carvalho B. M., Carvalho-Filho M. A., Saad M. J. Translational research into gut microbiota: new horizons in obesity treatment. Arq. Bras. Endocrinol. Metabol., 2009, vol. 53, no. 2, pp. 139–144.

Kotrova A. D., Shishkin A. N., Ermolenko E. I., Saraykina D. A., Volovnikova V. A. Gut microbiota and hypertension. Arterial’naia Gipertenziia, 2020, vol. 26, no. 6, pp. 620–628; https://doi.org/10.18705/1607-419X-2020-26-6-620-628 (In Russian)

Bäckhed F., Manchester J. K., Semenkovich C. F., Gordon J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 3, pp. 979–984; https://doi.org/10.1073/pnas.0605374104

Wellen K. E., Hotamisligil G. S. Inflammation, stress, and diabetes. J. Clin. Invest., 2005, no. 115,pp. 1111–1119.

Cicero A. F. G., Fogacci F., Bove M., Giovannini M., Borghi C. Impact of a short‑term synbiotic supplementation on metabolic syndrome and systemic inflammation in elderly patients: a randomized placebo controlled clinical trial. Eur. J. Nutr.Springer Berlin Heidelberg, 2021, vol. 60, no. 2, pp. 655–663.

Rabiei S., Hedayati M., Rashidkhani B., Saadat N., Shakerhossini R. The Effects of Synbiotic Supplementation on Body Mass Index, Metabolic and Inflammatory Biomarkers, and Appetite in Patients with Metabolic Syndrome: A Triple-Blind Randomized Controlled Trial the Effects of Synbiotic Supplementation on Body Mass Index. J. Diet. Suppl. Taylor & Francis, 2018, vol. 16, no. 3, pp. 294–306.

Plovier H., Everard A., Druart C., Depommier C., Van Hul M., Geurts L., Chilloux J., Ottman N., Duparc T., Lichtenstein L., Myridakis A., Delzenne N. M., Klievink J., Bhattacharjee A., Van der Ark K. C. H., Aalvink S., Martinez L. O., Dumas M.-Е., Maiter D., Loumaye A., Hermans M. P., Thissen J.-P., Belzer C., De Vos W. M., Cani P. D. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Publ. Gr. Nature Publishing Group, 2016, vol. 23, no. 1, pp. 107–113.

Desantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Env. Microbiol., 2006, vol. 72, no. 7, pp. 5069–5072.

Da Silva C. C., Monteil M. A., Davis E. M. Overweight and Obesity in Children Are Associated with an Abundance of Firmicutes and Reduction of Bifidobacterium in Their Gastrointestinal Microbiota.Child. Obes., 2020, vol. 16, no. 3, pp. 204–210; https://doi.org/10.1089/chi.2019.0280

Kalliomäki M., Collado M. C., Salminen S., Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr., 2008, vol. 87, no. 3, pp. 534–538; https://doi.org/10.1093/ajcn/87.3.534. PMID: 18326589.

Cani P. D., Bibiloni R., Knauf C., Waget A., Neyrinck A. M., Delzenne N. M., Burcelin R. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice. Diabetes, 2008, vol. 57, no. 6, pp. 1470–1481; https://doi.org/10.2337/db07-1403

Wall R., Ross R. P., Shanahan F., O’Mahony L., O’Mahony C., Coakley M., Hart O., Lawlor P., Quigley E. M., Kiely B., Fitzgerald G. F., Stanton C. Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am. J. Clin. Nutr., 2009, vol. 89, no. 5, pp. 1393–1401; https://doi.org/10.3945/ajcn.2008.27023

Cani P. D., Amar J., Iglesias M. A., Poggi M., Knauf C., Bastelica D., Neyrinck A. M., Fava F., Tuohy K. M., Chabo Ch., Waget A., Delmée E., Cousin B., Sulpice T., Chamontin B., Ferrières J., Tanti J.-F., Gibson G. R., Casteilla L., Delzenne N. M., Alessi M. Ch., Burcelin R. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 2007, vol. 56, pp. 1761–1772; https://doi.org/10.2337/db06-1491

O’Donovan A. N., Herisson F. M., Fouhy F., Ryan P. M., Whelan D., Johnson C. N., Cluzel G., Ross R. P., Stanton C., Caplice N. M. Gut microbiome of a porcine model of metabolic syndrome and HF-pEF.Am. J. Physiol. Heart Circ. Physiol., 2020, vol. 318, no. 3, pp. H590–H603.

Ferrer M., Ruiz A., Lanza F., Haange S. B., Oberbach A., Till H., Bargiela R., Campoy C., Segura M. T., Richter M., von Bergen M., Seifert J., Suarez A. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol., 2013, vol. 15, no. 1, pp. 211–226; https://doi.org/10.1111/j.1462-2920.2012.02845.x

Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., Sogin M. L., Jones W. J., Roe B. A., Affourtit J. P., Egholm M., Henrissat B., Heath A. C., Knight R., Gordon J. I. A core gut microbiome in obese and lean twins. Nature, 2009, vol. 457, no. 7228, pp. 480–484; https://doi.org/10.1038/nature07540

Del Chierico F., Abbatini F., Russo A., Quagliariello A., Reddel S., Capoccia D., Caccamo R., Ginanni Corradini S., Nobili V., De Peppo F., Dallapiccola B., Leonetti F., Silecchia G., Putignani L. Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential Patterns. Front. Microbiol., 2018, vol. 9, p. 1210; https://doi.org/10.3389/fmicb.2018.01210

Duan M., Wang Y., Zhang Q., Zou R., Guo M., Zheng H. Characteristics of gut microbiota in people with obesity. PLoS ONE. 2021, vol. 16, no. 8, e0255446; https://doi.org/10.1371/journal. pone.0255446

Christensen L., Vuholm S., Roager H. M., Nielsen D. S., Krych L., Kristensen M., Astrup A., Hjorth M. F. Prevotella Abundance Predicts Weight Loss Success in Healthy, Overweight Adults Consuming a Whole-Grain Diet Ad Libitum: A Post Hoc Analysis of a 6-Wk Randomized Controlled Trial. J. Nutr.,2019, vol. 149, no. 12, pp. 2174–2181; https://doi.org/10.1093/jn/nxz198

Song E. J., Han K., Lim T. J., Lim S., Chung M. J., Nam M. H., Kim H., Nam Y. D. Effect of probiotics on obesity-related markers per enterotype: a double-blind, placebo-controlled, randomized clinical trial.EPMA Journal, 2020, vol. 11, pp. 31–51; https://doi.org/10.1007/s13167-020-00198-y

Downloads

Published

2022-05-26

How to Cite

Kotrova, A., Shishkin, A. ., Pchelin, I. ., Hudiakova, N. ., Gladyshev, N. ., & Ermolenko, E. . (2022). Changes in the gut bacteria composition associated with metabolic syndrome*. Vestnik of Saint Petersburg University. Medicine, 17(1), 14–26. https://doi.org/10.21638/spbu11.2022.102

Issue

Section

Internal medicine