Role of the oral microbiota in the development of Alzheimer’s disease*

Authors

  • Natalia Gavrilova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation ; St. Petersburg Scientific Research Institute of Phthisiopulmonology Ministry of Health of the Russian Federation, 2–4, Ligovskii pr., St. Petersburg, 191036, Russian Federation
  • Nikita Gladyshev St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation;St. Petersburg Pasteur Institute, 14, ul. Mira, St. Petersburg, 197101, Russian Federation https://orcid.org/0000-0003-2732-5676
  • Anna Kotrova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-9430-6339
  • Anastasiia Morozova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-1998-042X
  • Lidiia Soprun St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-8396-0418
  • Victoria Volovnikova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-3429-1814
  • Tamara Fedotkina St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation;Institute of Evolutionary Physiology and Biochemistry named after I. M. Sechenov, 44, pr. Toreza, St. Petersburg, 194223, Russian Federation
  • Alexandr Shishkin St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2020.401

Abstract

Dementia and, in particular, Alzheimer’s disease (AD), affects millions of people around the world and its prevalence is steadily rising annually. Some risk factors for AD, such as age, cannot be modified, while others could possibly be corrected. In recent years, many studies are tackling the problem of the oral and gut microbiota as a provoking factor for AD and other neurodegenerative diseases, but their relationship and specific pathophysiological mechanisms remain understudied. The microbiota of the oral cavity can be of particular importance due to the specificity of microorganisms and their localization, as well as the possibility of provoking neuroinflammation, which requires further study. This review covers the specific features of the oral microbiota, current views on the pathophysiological role of the oral microbiota in the development of AD, as well as the beneficial role of probiotics. The study of this issue can have an important practical application both for the early diagnosis of AD, and for its further treatment.

Keywords:

Alzheimer’s disease, oral cavity, microbiota, probiotics, neurodegenerative diseases

Downloads

Download data is not yet available.
 

References


References

Sharma N., Bhatia S., Singh Sodhi A., Batra N. Oral microbiome and health. AIMS Microbiol. 2018,vol. 4, no. 1, pp. 42–66.

Marsh P. D., Do T., Beighton D., Devine D. A. Influence of saliva on the oral microbiota. Periodontology,2000, vol. 2016, no. 70, pp. 80–92.

Dewhirst F. E., Chen T., Izard J., Paster B. J., Tanner A. C. R., Yu W. H., Lakshmanan A., Wade W. G. The human oral microbiome. J. Bacteriol., 2010, vol. 192, no. 19, pp. 5002–5017.

Paster B. J., Olsen I., Aas J. A., Dewhirst F. E. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology, 2000, vol. 2006, no. 42, pp. 80–87.

Zarco M. F., Vess T. J., Ginsburg G. S. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Diseases, 2012, vol. 18, pp. 109–120.

Welch J. L. M., Rossetti B. J., Rieken C. W., Dewhirst F. E., Borisy G. G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. USA, 2016, vol. 13, no. 6, E791–800.

Chistiakov D. A., Orekhov A. N., Bobryshev Yu. V. Links between atherosclerotic and periodontal disease. Experimental and Molecular Pathology, 2016, vol. 100, pp. 220–235.

Lu M., Xuan S., Wang Z. Oral microbiota: A new view of body health. Food Science and Human Wellness,2019, vol. 8, pp. 8–15.

Zhang Y., Wang X., Li H., Ni C., Du Z., Yan F. Human oral microbiota and its modulation for oral health. Biomedicine and Pharmacotherapy, 2018, vol. 99, pp. 883–893.

Xu X., He J., Xue J. Wang Y., Li K., Zhang K., Guo Q., Liu X., Zhou Y., Cheng L., Li M., Li Yu., Li Ya., Shi W., Zhou X. Oral cavity contains distinct niches with dynamic microbial communities. Environ.Microbiol., 2015, vol. 17, no. 3, pp. 699–710.

Segata N., Haake S. K., Mannon P., Lemon K. P., Waldron L., Gevers D., Huttenhower C., Izard J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol.,2012, vol. 13, no. 6, R42.

Luftig R. Bacteriology of Humans: An Ecological Perspective. Microbe Mag., 2009, vol. 4, no. 6, pp. 298–298.

Laubichler M. D., Renn J. Extended evolution: A conceptual framework for integrating regulatory networks and niche construction. J. Exp. Zool. Part B Mol. Dev. Evol., 2015, vol. 324, no. 7, pp. 565–577.

Rosier B. T., Marsh P. D., Mira A. Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. Journal of Dental Research, 2018, vol. 97, pp. 371–380.

Lucchese A., Bondemark L., Marcolina M., Manuelli M. Changes in oral microbiota due to orthodontic appliances: a systematic review. J. Oral. Microbiol., 2018, vol. 10, no. 1, 1476645

Olsen I. The oral microbiome in health and disease. In: Oral Infections and General Health: From Molecule to Chairside. Springer International Publishing, 2015, pp. 97–114.

Poole S., Singhrao S. K., Kesavalu L., Curtis M. A., Crean S. J. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue.J. Alzheimer’s Dis.,2013, vol. 36, no. 4, pp. 665–677.

Sudhakara P., Gupta A., Bhardwaj A., Wilson A. Oral Dysbiotic Communities and Their Implications in Systemic Diseases. Dent. J., 2018, vol. 6, no. 2, p. 10.

Chen C. K., Wu Y. T., Chang Y. C. Association between chronic periodontitis and the risk of Alzheimer’s disease: A retrospective, population-based, matched-cohort study. Alzheimer’s Res. Ther., 2017,vol. 9, no. 1, pp. 1–7.

Wu Z., Nakanishi H. Connection between periodontitis and Alzheimer’s disease: Possible roles of microglia and leptomeningeal cells. Journal of Pharmacological Sciences. Japanese Pharmacological Society, 2014, vol. 126, pp. 8–13.

Bell J. S., Spencer J. I., Yates R. L., Yee S. A., Jacobs B. M., DeLuca G. C. Invited Review: From nose to gut — the role of the microbiome in neurological disease. Neuropathol. Appl. Neurobiol., 2019, vol. 45, no. 3, pp. 195–215.

Laugisch O., Johnen A., Maldonado A., Ehmke B., Bürgin W., Olsen I., Potempa J., Sculean A., Duning T., Eick S. Periodontal Pathogens and Associated Intrathecal Antibodies in Early Stages of Alzheimer’s Disease. J. Alzheimers Dis., 2018, no. 66 (1), pp. 105–114.

Hardy J., Selkoe D. J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, vol. 297, pp. 353–356.

Iqbal K., Grundke-Iqbal I. Discoveries of Tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: A personal historical perspective. Journal of Alzheimer’s Disease, 2006,vol. 9, pp. 219–242.

Pistollato F., Cano S. S., Elio I., Vergara M. M., Giampieri F., Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr. Rev., 2016, vol. 74, no. 10,pp. 624–634.

Sureda A., Daglia M., Argüelles Castilla S., Sanadgol N., Fazel Nabavi S., Khan H., Belwal T., Jeandet P., Marchese A., Pistollato F., Forbes-Hernandez T., Battino M., Berindan-Neagoe I., D’Onofrio G., Nabavi S. M. Oral microbiota and Alzheimer’s disease: Do all roads lead to Rome? Pharmacological Research, 2020, vol. 151, 104582.

Zhan X., Cox C., Ander B. P., Liu D., Stamova B., Jin L. W., Jickling G. C., Sharp F. R. Inflammation combined with ischemia produces myelin injury and plaque-like aggregates of myelin, amyloid-β and AβPP in adult rat brain. J. Alzheimer’s Dis., 2015, vol. 46, no. 2, pp. 507–523.

Zhan X., Stamova B., Sharp F. R. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain: A review. Frontiers in Aging Neuroscience. Frontiers Media S. A., 2018, vol. 10. https://doi.org/10.3389/fnagi.2018.00042.

Kotrova A. D., Shishkin A. N., Semienova O. I., Slepykh L. A. The role of gut microbiota in the development of metabolic syndrome. Exp. Clin. Gastroenterol., 2019, vol. 172, no. 12, pp. 101–108. (In Russian)

Yakovlev M. U. Elementy endotoksinovoi teorii fi ziologii i patologii cheloveka. Fiziol. Cheloveka, 2003,vol. 4, no. 29, pp. 476–485. (In Russian)

Minter M. R., Taylor J. M., Crack P. J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. Journal of Neurochemistry, 2016, vol. 136, pp. 457–474.

Dempsey C., Rubio Araiz A., Bryson K. J., Finucane O., Larkin C., Mills E. L., Robertson A. A. B., Cooper M. A., O’Neill L. A. J., Lynch M. A. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun.,2017, vol. 61, pp. 306–316.

Dominy S. S., Lynch C., Ermini F., Benedyk M., Marczyk A., Konradi A., Nguyen M., Haditsch U., Raha D., Griffin C., Holsinger L. J., Arastu-Kapur S., Kaba S., Lee A., Ryder M. I., Potempa B., Mydel P., Hellvard A., Adamowicz K., Hasturk H., Walker G. D., Reynolds E. C., Faull R. L. M., Curtis M. A., Dragunow M., Potempa J. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv., 2019, vol. 5, no. 1, eaau3333.

Aguayo S., Schuh C. M. A. P., Vicente B., Aguayo L. G. Association between Alzheimer’s disease and oral and gut microbiota: Are pore forming proteins the missing link? Journal of Alzheimer’s Disease, 2018, vol. 65, pp. 29–46.

Meurman J. H. Probiotics: Do they have a role in oral medicine and dentistry? European Journal of Oral Sciences, 2005, vol. 113, pp. 188–196.

Teughels W., Durukan A., Ozcelik O., Pauwels M., Quirynen M., Haytac M. C. Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: A randomized placebo-controlled study. J. Clin. Periodontol., 2013, vol. 40, no. 11, pp. 1025–1035.

Vivekananda M. R., Vandana K. L., Bhat K. G. Effect of the probiotic Lactobacilli reuteri (Prodentis) in the management of periodontal disease: a preliminary randomized clinical trial. J. Oral Microbiol.,2010, vol. 2, no. 1, 5344.

Allaker R. P., Stephen A. S. Use of Probiotics and Oral Health. Curr. Oral Heal. Reports., 2017, vol. 4,no. 4, pp. 309–318.

Szkaradkiewicz A. K., Stopa J., Karpinski M., Karpinski K. Effect of Oral Administration Involving a Probiotic Strain of Lactobacillus reuteri on Pro-Inflammatory Cytokine Response in Patients with Chronic Periodontitis. Arch. Immunol. Ther. Exp., 2014, vol. 6, no. 62, pp. 495–500.

Bonfili L., Cecarini V., Berardi S., Scarpona S., Suchodolski J. S., Nasuti C., Fiorini D., Boarelli M. C., Rossi G., Eleuteri A. M. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep., 2017, vol. 7, no. 1, pp. 1–21.

Barrett E., Ross R. P., O’Toole P. W., Fitzgerald G. F., Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol., 2012, vol. 113, no. 2, pp. 411–417.

Abraham D., Feher J., Scuderi G. L., Szabo D., Dobolyi A., Cservenak M., Juhasz J., Ligeti B., Pongor S., Gomez-Cabrera M. C., Vina J., Higuchi M., Suzuki K., Boldogh I., Radak Z. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp. Gerontol.,2019, vol. 115, pp. 122–131.

Kobayashi Y., Sugahara H., Shimada K., Mitsuyama E., Kuhara T., Yasuoka A., Kondo T., Abe K., Xiao J. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci. Rep., 2017, vol. 7, no. 1, 13510.

Akbari E., Asemi Z., Kakhaki R. D., Bahmani F., Kouchaki E., Tamtaji O. R., Hamidi G. A., Salami M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front Aging Neurosci., 2016, vol. 8, p. 256.

Downloads

Published

2021-01-25

How to Cite

Gavrilova, N., Gladyshev , N. ., Kotrova, A. ., Morozova, A. ., Soprun, . L. ., Volovnikova, V. ., … Shishkin, A. . (2021). Role of the oral microbiota in the development of Alzheimer’s disease*. Vestnik of Saint Petersburg University. Medicine, 15(4), 231–238. https://doi.org/10.21638/spbu11.2020.401

Issue

Section

Internal medicine

Most read articles by the same author(s)