ТКАНЕВЫЕ МАТРИЦЫ КЛАПАНОВ СЕРДЦА: СОСТОЯНИЕ ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ

Авторы

  • Павел Петрович Яблонский Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9 ; Клиника кардиоторакальной, сосудистой хирургии и трансплантации Медицинского университета Ганновера, Carl-Neuberg Str., 1, OE 6210, 30625, Hannover, Germany
  • Сергей Чеботарь Клиника кардиоторакальной, сосудистой хирургии и трансплантации Медицинского университета Ганновера, Carl-Neuberg Str., 1, OE 6210, 30625, Hannover, Germany
  • Игорь Тудорахе Клиника кардиоторакальной, сосудистой хирургии и трансплантации Медицинского университета Ганновера, Carl-Neuberg Str., 1, OE 6210, 30625, Hannover, Germany
  • Аксель Хаверих Клиника кардиоторакальной, сосудистой хирургии и трансплантации Медицинского университета Ганновера, Carl-Neuberg Str., 1, OE 6210, 30625, Hannover, Germany

DOI:

https://doi.org/10.21638/11701/spbu11.2016.206

Аннотация

Первые успешные протезирования аортального и митрального клапанов сердца были выполнены в 1960 г. соответственно D. Harken и N. Braunwald. В обоих случаях использовались механические протезы, однако спустя всего 10 лет M. Ionescu впервые имплантировал первый биологический клапан человеку. В ходе эволюции биологических клапанных протезов хирургами использовались свиные аортальные, ксеноперикардиальные протезы и человеческие аллографты (свежие и криосохраненные), а в последние полтора десятилетия на вооружение были взяты тканевая инженерия и направленная регенерация тканей. В настоящей статье описаны основные проблемы этой области, проведена сравнительная характеристика различных методик децеллюляризации полулунных клапанов, а также перспективы использования тканевой инженерии для создания атриовентрикулярных клапанных заменителей. Библиогр. 73 назв. Ил. 1.

Ключевые слова:

тканевая инженерия, направленная регенерация, децеллюляризация, децеллюляризированный клапан сердца, тканевая матрица

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки


References

Harken D., Soroff H., Taylor W. Partial and complete prostheses in aortic insuffi ciency. J. Thorac. Cardiovasc. Surg., 1960, vol. 40, p. 744.

Braunwald N. S., Morrow A. G. Prosthetic reconstruction of the mitral valve. Prog. Cardiovasc. Dis.,1963, vol. 5, no. 4, pp. 313–328.

Ionescu M. I. et al. Heart valve replacement with the Ionescu-Shiley pericardial xenograft . J. Thorac. Cardiovasc. Surg., 1977, vol. 73, no. 1, pp. 31–42.

Fuchs J. R., Nasseri B. A., Vacanti J. P. Tissue engineering: A 21st century solution to surgical reconstruction.Ann. Th orac. Surg., 2001, vol. 72, no. 01, pp. 577–591.

Lichtenberg A. et al. Biological scaff olds for heart valve tissue engineering. Methods Mol. Med., 2007,vol. 140, no. 2, pp. 309–317.

Lichtenberg A. et al. Flow-dependent re-endothelialization of tissue-engineered heart valves. J. Heart Valve Dis., 2006, vol. 15, pp. 287–293; discussion 293–294.

Shinoka T. et al. Tissue engineering heart valves: Valve leafl et replacement study in a lamb model.Ann. Th orac. Surg., 1995, vol. 60, pp. S513–S516.

Dohmen P. M. et al. Results of a decellularized porcine heart valve implanted into the juvenile sheep model. Heart Surg. Forum, 2005, vol. 8, no. 2, pp. 72–76.

Dohmen P. M. et al. Histological evaluation of tissue-engineered heart valves implanted in the juvenile sheep model: is there a need for in-vitro seeding? J. Heart Valve Dis,. 2006, vol. 15, no. 6, pp. 823–829.

O’Brien M. F. et al. Th e SynerGraft valve: a new acellular (nonglutaraldehyde-fi xed) tissue heart valve for autologous recellularization fi rst experimental studies before clinical implantation. Semin. Thorac. Cardiovasc. Surg., 1999, vol. 11, no. 4 Suppl. 1, pp. 194–200.

Erez E. et al. Mitral valve replacement in children. J. Heart Valve Dis., 2003, vol. 12, no. July 2000,pp. 25–30.

Mendelson K., Schoen F. J. Heart valve tissue engineering: Concepts, approaches, progress, and challenges. Ann. Biomed. Eng., 2006, vol. 34, no. 12, pp. 1799–1819.

Shi Y., Vesely I. Characterization of statically loaded tissue-engineered mitral valve chordae tendineae. J. Biomed. Mater. Res. A, 2004, vol. 69, pp. 26–39.

Moreira R. et al. TexMi — Development of Tissue-Engineered Textile-Reinforced Mitral Valve Prosthesis. Tissue Eng. Part C. Methods, 2014, vol. 20, no. 9, pp. 741–748.

Badylak S. F. et al. Th e use of xenogeneic small intestinal submucosa as a biomaterial for Achille’s tendon repair in a dog model. J. Biomed. Mater. Res., 1995, vol. 29, no. 8, pp. 977–985.

Schoen F. J., Levy R. J. Calcifi cation of tissue heart valve substitutes: Progress toward understanding and prevention. Ann. Th orac. Surg., 2005, vol. 79, pp. 1072–1080.

Gilbert T. W. et al. Collagen fi ber alignment and biaxial mechanical behavior of porcine urinary

bladder derived extracellular matrix. Biomaterials, 2008, vol. 29, no. 36, pp. 4775–4782.

Hodde J. et al. Eff ects of sterilization on an extracellular matrix scaff old: Part I. Composition and matrix architecture. J. Mater. Sci. Mater. Med., 2007, vol. 18, no. 4, pp. 537–543.

Dong X. et al. RGD-modifi ed acellular bovine pericardium as a bioprosthetic scaff old for tissue engineering. J. Mater. Sci. Mater. Med., 2009, vol. 20, no. 11, pp. 2327–2336.

Reing J. E. et al. Th e eff ects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaff olds. Biomaterials, 2010, vol. 31, no. 33, pp. 8626–8633.

Gorschewsky O. et al. Quantitative analysis of biochemical characteristics of bone-patellar tendonbone allograft s. Biomed. Mater. Eng., 2005, vol. 15, no. 6, pp. 403–411.

Cox B., Emili A. Tissue subcellular fractionation and protein extraction for use in mass-spectrometrybased proteomics. Nat. Protoc.,2006, vol. 1, no. 4, pp. 1872–1878.

Xu C. C., Chan R. W., Tirunagari N. A Biodegradable, Acellular Xenogeneic Scaff old for. Tissue Eng.,2007, vol. 13, no. 3, pp. 551–566.

Giusti S. et al. An improved method to obtain a soluble nuclear fraction from embryonic brain tissue.Neurochem. Res., 2009, vol. 34, no. 11, pp. 2022–2029.

Chen R.-N. et al. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials, 2004, vol. 25, no. 13, pp. 2679–2686.

Nakayama K. H. et al. Decellularized rhesus monkey kidney as a three-dimensional scaff old for renal tissue engineering. Tissue Eng. Part A, 2010, vol. 16, no. 7, pp. 2207–2216.

Wong M. L. et al. Th e role of protein solubilization in antigen removal from xenogeneic tissue for heart valve tissue engineering. Biomaterials, 2011, vol. 32, pp. 8129–8138.

Rieder E. et al. Decellularization protocols of porcine heart valves diff er importantly in effi ciency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg., 2004, vol. 127, no. 2, pp. 399–405.

Cebotari S. et al. Detergent decellularization of heart valves for tissue engineering: Toxicologicaleff ects of residual detergents on human endothelial cells. Artif. Organs, 2010, vol. 34, no. 3, pp. 206–210.

Methe K. et al. An Alternative Approach to Decellularize Whole Porcine Heart. Biores.Open Access,2014, vol. 3, no. 6, pp. 327–338.

Meyer S. R. et al. Comparison of aortic valve allograft decellularization techniques in the rat.J. Biomed. Mater. Res. — Part A, 2006, vol. 79, no. 2, pp. 254–262.

Lumpkins S. B., Pierre N., McFetridge P. S. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaff old for tissue engineering the temporomandibular joint disc. Acta Biomater., 2008, vol. 4, no. 4, pp. 808–816.

Courtman D. W. et al. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical eff ects of cell extraction. J. Biomed. Mater. Res., 1994, vol. 28, no. 6, pp. 655–666.

Kasimir M. T. et al. Comparison of diff erent decellularization procedures of porcine heart valves. Int. J. Artif. Organs, 2003, vol. 26, no. 5, pp. 421–427.

Petersen T. H. et al. Tissue-engineered lungs for in vivo implantation. Science, 2010, vol. 329, no. 5991, pp. 538–541.

Du L. et al. Histological evaluation and biomechanical characterisation of an acellular porcine cornea scaff old. Br. J. Ophthalmol., 2011, vol. 95, no. 3, pp. 410–414.

Gui L. et al. Novel utilization of serum in tissue decellularization. Tissue Eng. Part C. Methods, 2010,vol. 16, no. 2, pp. 173–184.

Booth C. et al. Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaff old. J. Heart Valve Dis., 2002, vol. 11, no. 4, pp. 457–462.

Caamaño S. et al. Does sodium dodecyl sulfate wash out of detergent-treated bovine pericardium at cytotoxic concentrations? J. Heart Valve Dis., 2009, vol. 18, no. 12, pp. 101–105.

Prasertsung I. et al. Development of acellular dermis from porcine skin using periodic pressurized technique. J. Biomed. Mater. Res. — Part B Appl. Biomater., 2008, vol. 85, no. 1, pp. 210–219.

Levy R. J. et al. Inhibition of cusp and aortic wall calcifi cation in ethanol- and aluminum-treated bioprosthetic heart valves in sheep: background, mechanisms, and synergism. J. Heart Valve Dis., 2003, vol. 12, no. 2, pp. 209–216; discussion 216.

Dunmore-Buyze J. et al. A Comparison of Macroscopic Lipid Content within Porcine Pulmonary and Aortic Valves. J. Th orac. Cardiovasc. Surg., 1995, vol. 110, no. 6, pp. 1756–1761.

Flynn L. E. Th e use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic diff erentiation of human adipose-derived stem cells. Biomaterials, 2010, vol. 31, no. 17,pp. 4715–4724.

Brown B. N. et al. Comparison of three methods for the derivation of a biologic scaff old composed of adipose tissue extracellular matrix. Tissue Eng. Part C. Methods, 2011, vol. 17, no. 4, pp. 411–421.

Cole M. B. Alteration of cartilage matrix morphology with histological processing. J. Microsc., 1984, vol. 133, no. Pt 2, pp. 129–140.

Jamur M. C., Oliver C. Cell fi xatives for immunostaining. Methods Mol. Biol., 2010, vol. 588, pp. 55–61.

Crapo P. M., Gilbert T. W., Badylak S. F. An overview of tissue and whole organ decellularization processes. Biomaterials, 2011, vol. 32, no. 12, pp. 3233–3243.

Yang M. et al. Favorable eff ects of the detergent and enzyme extraction method for preparing decellularized bovine pericardium scaff old for tissue engineered heart valves. J. Biomed. Mater. Res. —Part B Appl. Biomater., 2009, vol. 91, no. 1, pp. 354–361.

Waldrop F. S. et al. Histochemical investigations of diff erent types of collagen. Acta Histochem. Suppl., 1980, vol. 21, pp. 23–31.

Yang B. et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng. Part C. Methods, 2010, vol. 16, no. 5, pp. 1201–1211.

Hopkinson A. et al. Optimization of amniotic membrane (AM) denuding for tissue engineering.Tissue Eng. Part C. Methods, 2008, vol. 14, no. 4, pp. 371–381.

Hilfi ker A. et al. Reduction of xeno-antigens in porcine pulmonary heart valves by decellularization and glycolytic enzymatic treatment. Xenotransplantation, 2014, vol. 21, no. 2, pp. 190–190.

Klebe R. J. Isolation of a collagen-dependent cell attachment factor. Nature, 1974, vol. 250, no. 463, pp. 248–251.

Maurer P., Hohenester E. Structural and functional aspects of calcium binding in extracellular matrix proteins. Matrix Biol., 1997, vol. 15, no. 8–9, pp. 569–580; discussion 581.

Tudorache I. et al. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J. Heart Valve Dis., 2007, vol. 16, pp. 567–573; discussion 574.

Wainwright J. M. et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng. Part C. Methods, 2010, vol. 16, no. 3, pp. 525–532.

Lehr E. J. et al. Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J. Thorac. Cardiovasc. Surg. Th e American Association for Thoracic Surgery, 2011, vol. 141, no. 4, pp. 1056–1062.

Gillies A. R. et al. Method for decellularizing skeletal muscle without detergents or proteolytic enzymes. Tissue Eng. Part C. Methods, 2011, vol. 17, no. 4, pp. 383–389.

Patel N. et al. Strategies to recover proteins from ocular tissues for proteomics. Proteomics, 2008,vol. 8, no. 5, pp. 1055–1070.

Cortiella J. et al. Infl uence of acellular natural lung matrix on murine embryonic stem cell diff erentiation and tissue formation. Tissue Eng. Part A, 2010, vol. 16, no. 8, pp. 2565–2580.

Lee R. C. Cell injury by electric forces. Ann. N. Y. Acad. Sci., 2005, vol. 1066, pp. 85–91.

Phillips M., Maor E., Rubinsky B. Nonthermal irreversible electroporation for tissue decellularization.J. Biomech. Eng., 2010, vol. 132, no. 9, pp. 091003.

Rieder E. et al. Tissue engineering of heart valves: Decellularized porcine and human valve scaff olds diff er importantly in residual potential to attract monocytic cells. Circulation, 2005, vol. 111, no. 21,pp. 2792–2797.

Simon P. et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardio-thoracic Surg., 2003, vol. 23, pp. 1002–1006.

Yacoub M. N. et al. Fourteen-Year Experinence with Homovital Homograft s for Aortic Valve Replacement. J. Th orac. Cardiovasc. Surg., 1995.

Macher B. A., Galili U. Th e Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim. Biophys. Acta, 2008, vol. 1780, no. 2, pp. 75–88.

Wong M. L. et al. Stepwise solubilization-based antigen removal for xenogeneic scaff old generation in tissue engineering. Acta Biomater. Acta Materialia Inc., 2013, vol. 9, no. 5, pp. 6492–6501.

Cicha I. et al. Early obstruction of decellularized xenogenic valves in pediatric patients: involvement of infl ammatory and fi broproliferative processes. Cardiovasc. Pathol., 2011, vol. 20, no. 4, pp. 222–231.

Rüff er A. et al. Early failure of xenogenous de-cellularised pulmonary valve conduits — a word of caution! Eur. J. Cardio-thoracic Surg., 2010, vol. 38, no. 1, pp. 78–85.

Perri G. et al. Early and late failure of tissue-engineered pulmonary valve conduits used for right ventricular outfl ow tract reconstruction in patients with congenital heart disease. Eur. J. Cardio-thoracic Surg., 2012, vol. 41, no. 6, pp. 1320–1325.

Da Costa F. D. a et al. Th e early and midterm function of decellularized aortic valve allograft s. Ann. Thorac. Surg. Elsevier Inc., 2010, vol. 90, no. 6, pp. 1854–1860.

Cebotari S. et al. Use of fresh decellularized allograft s for pulmonary valve replacement may reduce the reoperation rate in children and young adults: Early report. Circulation,2011, vol. 124.

Iablonskii P. et al. Tissue-engineered mitral valve: morphology and biomechanics.Interact. Cardiovasc. Thorac. Surg., 2015, pp. 1–8.

Загрузки

Опубликован

07.10.2016

Как цитировать

Яблонский, П. П., Чеботарь, С., Тудорахе, И., & Хаверих, А. (2016). ТКАНЕВЫЕ МАТРИЦЫ КЛАПАНОВ СЕРДЦА: СОСТОЯНИЕ ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ. Вестник Санкт-Петербургского университета. Медицина, 11(2), 51–61. https://doi.org/10.21638/11701/spbu11.2016.206

Выпуск

Раздел

Кардиология

Наиболее читаемые статьи этого автора (авторов)