The pathogenesis of pulmonary hypertension — vessel wall ischemia as the driving force in disease initiation and progression*

  • Эмма Хайсе Department of Cardiac, Cardiothoracic, Vascular and Transplantation Surgery, Medizinische Hochschule Hannover, 1, Carl-Neuberg-Str., Hannover, 30625, Germany
  • Леонид Чурилов St. Petersburg Research Institute of Phthisiopulmonology, Health Ministry of Russia, 2–4, Ligovskiy pr., St. Petersburg, 191036, Russian Federation ; St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Татьяна Новицкая St. Petersburg Research Institute of Phthisiopulmonology, Health Ministry of Russia, 2–4, Ligovskiy pr., St. Petersburg, 191036, Russian Federation ; St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Петр Яблонский St. Petersburg Research Institute of Phthisiopulmonology, Health Ministry of Russia, 2–4, Ligovskiy pr., St. Petersburg, 191036, Russian Federation ; St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Аксель Хаверих Department of Cardiac, Cardiothoracic, Vascular and Transplantation Surgery, Medizinische Hochschule Hannover, 1, Carl-Neuberg-Str., Hannover, 30625, Germany

Аннотация

Surgeons are not trained to decipher the pathogenesis of diseases, which they operate on. They are used to repair, remove, or replace defective tissues and organs. Yet, we often see typical pathomorphological or pathophysiological phenomena, characteristic of a specific disorder that can only be observed during surgery. Such patterns would not be recognized easily by current imaging techniques, and their visibility would require a living organism. In modern terminology, one could call them “surgical biomarkers”. Many disease entities, today, are still not completely deciphered regarding initial links of their pathogenesis, despite decades of experimental and clinical research. In such disorders, characteristically named “idiopathic”, surgical observations may be helpful to clarify disease mechanisms, two of which we offer here for one of these disease entities, namely pulmonary hypertension.

Скачивания

Данные скачивания пока недоступны.
 

Литература


References

Valij K. Vascular and Interventional Radiology. 2nd edition. W. B. Saunders Co. Ltd, 2006.

Miller W. S. The Lung. Charles C. Thomas, 1947.

Hayek H., von. The Human Lung. Hafner, 1960.

Simonneau G., Montani D., Celermajer D. S., Denton C. P., Gatzoulis M. A., Krowka M., Williams P. G.,Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. The European respiratory journal, 2019, vol. 53, no. 1. https://doi.org/10.1183/13993003.01913-2018

Mani P., Gonzalez D., Chatterjee S., Faulx M. D. Cardiovascular complications of systemic sclerosis:What to look for. Cleve Clin. J. Med., 2019, vol. 86, no. 10, pp. 685–695. https://doi.org/10.3949/ccjm.86a.18109

Agmon-Levin N., Selmi C. The autoimmune side of heart and lung diseases. Clinical Reviews in Allergy and Immunology, 2013, vol. 44, no. 1, pp. 1–5. https://doi.org/10.1007/s12016012-8335-x

Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology, 2009,vol. 47 (Suppl. 5), pp. 4–6. https://doi.org/10.1093/rheumatology/ken265

Salman J, Ius F., Sommer W., Siemeni T., Kuehn C., Avsar M., Boethig D., Molitoris U., Bara C., Gottlieb J., Welte T., Haverich A., Hoeper M. M., Warnecke G., Tudorache I. Mid-term results of bilateral lung transplant with postoperatively extended intraoperative extracorporeal membrane oxygenation for severe pulmonary hypertension. European Journal of Cardio-thoracic Surgery, 2017, vol. 52, no. 1,pp. 163–170. https://doi.org/10.1093/ejcts/ezx047

Mitzner W., Lee W., Georgakopolous D., Wagner E. Angiogenesis in the mouse lung. American Journal of Pathology, 2000, vol. 157, no. 1, pp. 93–101. https://doi.org/10.1016/S0002-9440(10)64521-X

Walker C. M., Rosado-De-Christenson M. L., Martínez-Jiménez S., Kunin J. R., Wible B. C. Bronchia arteries: Anatomy, function, hypertrophy, and anomalies. Radiographics, 2015, vol. 35, no. 1, pp. 32–49. https://doi.org/10.1148/rg.351140089

Humbert M., Guignabert C., Bonnet S., Dorfmüller P., Klinger J. R., Nicolls M. R., Olschewski A. J.,Pullamsetti S. S., Schermuly R. T., Stenmark K. R., Rabinovitch M. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. The European respiratory journal, 2019, vol. 53, no. 1. https://doi.org/10.1183/13993003.01887-2018

Mulligan-Kehoe M. J., Simons M. Vasa Vasorum in Normal and Diseased Arteries. Circulation, 2014,vol. 129, no. 24, pp. 2557–2566. https://doi.org/10.1161/Circulationaha.113.007189

Haverich A., Boyle E. C. Key role of vasa vasorum dysfunction in the pathogenesis of atherosclerosis. Clinical Pathophysiology, 2016, vol. 3, no. 22, pp. 88–96.

Bordenave J., Tu L., Savale L., Huertas A., Humbert M. G. C. New insights in the pathogenesis of pulmonary arterial hypertension. Rev. Mal. Respir., 2019, vol. 36, no. 4, pp. 433–437. https://doi.org/10.1016/j.rmr.2019.03.003

Hamaoka-Okamoto A., Suzuki C., Yahata T., Ikeda K., Nagi-Miura N., Ohno N., Arai Yo., Tanaka H.,Takamatsu T., Hamaoka K. The involvement of the vasa vasorum in the development of vasculitis in animal model of Kawasaki disease. Pediatric Rheumatology, 2014, vol. 12, no. 1, pp. 1–9. https://doi.org/10.1186/1546-0096-12-12

Boyle E. C., Haverich A. Microvasculature dysfunction as the common thread between atherosclerosis, Kawasaki disease, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated multi-system inflammatory syndrome in children. European Journal of Cardio-Thoracic Surgery, 2020,vol. 58, no. 6, pp. 1109–1110. https://doi.org/10.1093/ejcts/ezaa367

Haverich A., Boyle E. C. Atherosclerosis, Pathogenesis and Microvascular Dysfunction. Springer, 2019.

McLaughlin R. F. (Jr), Tyler W. S., Canada R. O. Subgross Pulmonary Anatomy of the Rabbit, Rat, and Guinea Pig, with Additional Notes on the Human Lung. American Review of Respiratory Disease, 1965,vol. 94, no. 4, pp. 380–387.

Ohtani O. Microvasculature of the rat lung as revealed by scanning electron microscopy of corrosion casts. Scanning electron microscopy, 1980, vol. 3, pp. 349–356.

Townsley M. I. Structure and composition of pulmonary arteries, capillaries and veins. Comprehensive Physiology, 2013, vol. 2, pp. 675–709. https://doi.org/10.1002/cphy.c100081

Suresh K. Lung Circulation. Comprehensive Physiology. 2020, vol. 6, no. 2, pp. 897–943. https://doi.org/10.1002/cphy.c140049

Clarke J. A. An X-Ray Microscopic Study of the Vasa Vasorum of Normal Human Pulmonary Arteries. Thorax, 1964, vol. 19, pp. 561–567. https://doi.org/10.1136/thx.19.6.561

Clarke J. A. An x-ray microscopic study of the vasa vasorum of the normal human pulmonary trunk. Acta Anat., 1965, vol. 61, no. 1, pp. 6–14. https://doi.org/10.1159/000142680

Heath D., Smith P., Gosney J., Mulcahy D., Fox K., Yacoub M., Harris P. The pathology of the early and late stages of primary pulmonary hypertension. Heart, 1987, vol. 58, no. 3, pp. 204–213. https://doi.org/10.1136/hrt.58.3.204

Rosenkranz S., Gibbs J. S. R., Wachter R., de Marco T., Vonk-Noordegraaf A., Vachiéry J. L. Left ventricular heart failure and pulmonary hypertension. European Heart Journal, 2016, vol. 37, no. 12, pp. 942–954. https://doi.org/10.1093/eurheartj/ehv512

Dunham-Snary K. J., Wu D., Sykes E. A, Thakrar A., Parlow L. R. G., Mewburn J. D., Parlow J. L., Archer S. L. Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine. Chest, 2017,vol. 151, no. 1, pp. 181–192. https://doi.org/10.1016/j.chest.2016.09.001

Euler U. S. V., Liljestrand G. Observations on the Pulmonary Arterial Blood Pressure in the Cat. Acta Physiologica Scandinavica, 1946, vol. 12, no. 4, pp. 301–320. https://doi.org/10.1111/j.1748-1716.1946.tb00389.x

Stroev Y. I., Churilov L. P. Diagnosis of the diseases of respiratory system and its pathophysiological basis: iii. Cor pulmonale — pulmonary heart disease. Rus. Biomed. Res., 2020, vol. 5, no. 2, pp. 4–16.

Zaichik A. S., Churilov L. P. Inflammatory Foci Autonomy, Autochthonous Character and Barrier Functions of Inflammation. Osnovy obschej patologii. ELBI-SpezLit Publishers, 1999. 654 p. (In Russian)

Yuan X. J., Goldman W. F., Tod M. L., Rubin L. J., Blaustein M. P. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. American Journal of Physiology —Lung Cellular and Molecular Physiology, 1993, vol. 264 (2 Pt 1), L107–15. https://doi.org/10.1152/ajplung.1993.264.2.l116

Goldenberg N. M., Wang L., Ranke H., Liedtke W., Tabuchi A. K. W. TRPV4 Is Required for Hypoxic Pulmonary Vasoconstriction. Anesthesiology, 2015, vol. 122, no. 6, pp. 1338–1348. https://doi.org/10.1097/ALN.0000000000000647

Wang L., Yin J., Nickles H. T., Ranke H., Tabuchi A., Hoffmann Ju., Tabeling C., Barbosa-Sicard E.,Chanson M., Kwak B. R., Shin H.-S., Wu S., Isakson B. E., Witzenrath M., de Wit C., Fleming I.,

Kuppe H., Kuebler W. M. Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. Journal of Clinical Investigation, 2012, vol. 122, no. 11, pp. 4218–4230.https://doi.org/10.1172/JCI59176

Leong D., Rave R., Kocheril A., Sovari A. Cor Pulmonale Overview of Cor Pulmonale Management. Available at: https://emedicine.medscape.com/article/154062-overview (accessed: 01.02.2021).

Pietra G. G. Histopathology of primary pulmonary hypertension. Chest, 1994, vol. 105 (2 suppl.),2S–6S. https://doi.org/10.1378/chest.105.2_Supplement.2S

Meyrick B., Perkett E. A. The sequence of cellular and hemodynamic changes of chronic pulmonary hypertension induced by hypoxia and other stimuli. The American review of respiratory disease, 1989,vol. 40, no. 5, pp. 1486–1489.

Zarins C. K., Giddens D. P., Bharadvaj B. K., Sottiurai V. S., Mabon R. F., Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research, 1983, vol. 53, no. 4, pp. 502–514. https://doi.org/10.1161/01.RES.53.4.502

Fagundes A., Pereira A. H., Corrêa R. K., Oliveira M. T., Rodriguez R. Efeitos da remoção da tunica adventícia da aorta descendente em suínos. Revista do Colégio Brasileiro de Cirurgiões, 2012, vol. 39,no. 2, pp. 133–138. https://doi.org/10.1590/S0100-69912012000200009

Sobin S. S., Frasher W. G., Tremer H. M. Vasa vasorum of the pulmonary artery of the rabbit. Circulation research, 1962, vol. 11, pp. 257–263. https://doi.org/10.1161/01.RES.11.2.257

Heistad D. D., Armstrong M. L., Amundsen S. Blood flow through vasa vasorum in arteries and veins: Effects of luminal PO2. American Journal of Physiology — Heart and Circulatory Physiology, 1986,vol. 250, no. 3, pp. 434–442. https://doi.org/10.1152/ajpheart.1986.250.3.h434

Tanaka H., Zaima N., Sasaki T., Sano M., Yamamoto N., Saito T., Inuzuka K., Hayasaka T., Goto-Inoue N., Sugiura Yu., Sato K., Kugo H., Moriyama T., Konno H., Setou M., Unno N. Hypoperfusion of the Adventitial Vasa Vasorum Develops an Abdominal Aortic Aneurysm. Cheng X, ed. PloS One, 2015,vol. 10, no. 8, e0134386. https://doi.org/10.1371/journal.pone.0134386

Fagundes A., Pereira A. H., Corrêa R. K., de Oliveira M. T., Rodriguez R. Effects of removal of the adventitia of the descending aorta and structural alterations in the tunica media in pigs. Revista do Colegio Brasileiro de Cirurgioes, 2012, vol. 39, no. 2, pp. 133–137. https://doi.org/10.1590/S0100-69912012000200009

Heistad D. D., Armstrong M. L., Amundsen S. Blood flow through vasa vasorum in arteries and veins: Effects of luminal PO2. American Journal of Physiology — Heart and Circulatory Physiology, 1986, vol. 250, no. 3, pp. 434–442. https://doi.org/10.1152/ajpheart.1986.250.3.h434

Barker S. G., Causton B. E., Baskerville P. A., Gent S., Martin J. F. The vasa vasorum of the rabbit carotid artery. J. Anat., 1992, vol. 180, pp. 225–231.

Martin J. F, Booth R. F MS. Arterial wall hypoxia following hyperfusion through the vasa vasorum is an initial lesion in atherosclerosis. Eur. J. Clin. Invest., 1990, vol. 20, no. 6, pp. 588–592. https://doi.org/0.1111/j

Umar S., Ruffenach G., Moazeni S., Vaillancourt M., Hong J., Cunningham Ch., Cao N., Navab S.,Sarji Sh., Li Min, Lee L., Fishbein G., Ardehali A., Navab M., Reddy S., Eghbali M. Involvement of Low-Density Lipoprotein Receptor in the Pathogenesis of Pulmonary Hypertension. Journal of the American Heart Association, 2020, vol. 9, no. 2, e012063. https://doi.org/10.1161/JAHA.119.012063

Pirillo A. LOX-1, OxLDL and Atherosclerosis. Mediators of Inflammation, 2013, vol. 2013 (March). 12 p.

Petroglou D., Kanellos I., Savopoulos C., Kaiafa G., Chrysochoou A., Skantzis P., Daios S., Hatzitolios A. I., Giannoglou G. The LDL-Receptor and its Molecular Properties: From Theory to Novel Biochemical and Pharmacological Approaches in Reducing LDL-cholesterol. Curr. Med. Chem., 2020, vol. 27, no. 2, pp. 317–333. https://doi.org/10.2174/0929867325666180604114819

Ellulu M. S., Patimah I., Khaza’ai H., Rahmat A., Abed Y., Ali F. Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacology, 2016, vol. 24, no. 1, pp. 1–10. https://doi.org/10.1007/s10787-015-0255-y

Szekanecz Z., Kerekes G., Végh E., Kardos Z., Baráth Z., Tamási L., Shoenfeld Y. Autoimmune atherosclerosis in 3D: How it develops, how to diagnose and what to do. Autoimmun Rev., 2016, vol. 15, no. 7,pp. 756–769. https://doi.org/10.1016/j.autrev.2016.03.014

Gerö S. Some data on the influence of cholesterol atherosclerosis by immunological means. Rev. Atheroscler. (Paris), 1967, vol. 9, no. 1, pp. 194–198.

Cinoku I. I., Mavragani C. P., Moutsopoulos H. M. Atherosclerosis: Beyond the lipid storage hypothesis. The role of autoimmnity. European Journal of Clinical Investigation, 2020, vol. 50, no. 2, pp. 1–9.https://doi.org/10.1111/eci.13195

Sanjadi M., Rezvanie Sichanie Z., Totonchi H., Karami J., Rezaei R., Aslani S. Atherosclerosis and autoimmunity: a growing relationship. International Journal of Rheumatic Diseases, 2018, vol. 21, no. 5, pp. 908–921. https://doi.org/10.1111/1756-185X.13309

Marasini B., Massarotti M., Cossutta R., Massironi L., Mantero A. Pulmonary hypertension in autoimmune rheumatic diseases. Reumatismo, 2005, vol. 57, no. 2, pp. 114–118. https://doi.org/10.4081/reumatismo.2005.114

Gorbachev V. P. Changes in the pulmonary artery in collagen diseases. Arkh. Patol., 1979, vol. 41, no. 2,pp. 31–35. (In Russian)

Sugimoto K., Nakazato K., Sato A., Suzuki S., Yoshihisa A., Machida T., Saitoh S., Sekine H., Takeishi Ya. Autoimmune disease mouse model exhibits pulmonary arterial hypertension. PLoS ONE, 2017,vol. 12, no. 9, pp. 2–13. https://doi.org/10.1371/journal.pone.0184990

Moore G. W., Smith R. R. H. G. Pulmonary artery atherosclerosis: correlation with systemic atherosclerosis and hypertensive pulmonary vascular disease. Arch. Pathol. Lab. Med., 1982, vol. 106, no. 8,pp. 378–380.

Kohnken R., Scansen B. A., Premanandan C. Vasa Vasorum Arteriopathy: Relationship with Systemic Arterial Hypertension and Other Vascular Lesions in Cats. Veterinary Pathology, 2017, vol. 54, no. 3,pp. 475–483. https://doi.org/10.1177/0300985816685137

Moschcowitz E. Hyperplastic arteriosclerosis versus atherosclerosis. J. Am. Med. Assoc., 1950, vol. 143, no. 10, pp. 861–865. https://doi.org/10.1001/jama.1950.02910450001001

Fishbein M. C., Fishbein G. A. Arteriosclerosis: facts and fancy. Cardiovasc. Pathol., 2015, vol. 24, no. 6, pp. 335–342. https://doi.org/10.1016/j.carpath.2015.07.007

Опубликован
2021-04-01
Как цитировать
Хайсе, Э., Чурилов, Л., Новицкая, Т., Яблонский, П., & Хаверих, А. (2021). The pathogenesis of pulmonary hypertension — vessel wall ischemia as the driving force in disease initiation and progression*. Вестник Санкт-Петербургского университета. Медицина, 16(1), 20-36. https://doi.org/10.21638/spbu11.2021.103
Раздел
Хирургия