The influence of selective serotonin reuptake inhibitors on behavior of adult Danio rerio in experimental depression

Авторы

  • Sergei Proshin Federal Establishment of Science “Institute of Toxicology” Federal Medical & Biological Agency, 1, Behktereva ul., 192019, St. Petersburg, Russian Federation https://orcid.org/0000-0001-9720-4381
  • Milana Dzhabrailova State Educational Establishment of Higher Professional Training “St. Petersburg State Pediatric Medical” of the Health Ministry of the Russian Federation, 2, Litovskaya ul., 194100, St. Petersburg, Russian Federation https://orcid.org/0000-0003-0209-631X
  • Yanina Kolesnik North-Western State Medical University named after I. I. Mechnikov, 47, Piskarevskii pr., St. Petersburg, 195067, Russian Federation
  • Magomed Saigidmagomedov State Educational Establishment of Higher Professional Training “St. Petersburg State Pediatric Medical” of the Health Ministry of the Russian Federation, 2, Litovskaya ul., 194100, St. Petersburg, Russian Federation https://orcid.org/0000-0001-5890-6524
  • Ali Dzeitov State Educational Establishment of Higher Professional Training “St. Petersburg State Pediatric Medical” of the Health Ministry of the Russian Federation, 2, Litovskaya ul., 194100, St. Petersburg, Russian Federati
  • Polina Khаlturina State Educational Establishment of Higher Professional Training “St. Petersburg State Pediatric Medical” of the Health Ministry of the Russian Federation, 2, Litovskaya ul., 194100, St. Petersburg, Russian Federation
  • Valentina Veizer Pryvite Educational Establishment of Higher Professional Training “St.Petersburg Medical and Social Institute”, 72, Kondrat’evskii pr., St. Petersburg, 195271, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2019.301

Аннотация

Depression is one the most common form of mental diseases. Due to epidemiological studies,it is common in different age groups including young people. Depression pathogenesis from the point of system perspective view consists of morphofunctional and pathopsychological components. The former can be divided into neuroanatomical, neurophysiological, neurochemical parts. Laboratory animals as experimental models are an invaluable tool for investigating pathogenesis of depressive disorders and creating potential treatments. In our study Danio rerio was used as an experimental model of depression. In fish schools during separation in pairs, anxious and aggressive behavior towards each other was manifested. It contributes to formation of dominant-subordinate relationships. Before administration of fluoxetine and sertraline in all the groups studied, the lower level of fish swimming was observed. They were hyperactive. Aggressive behavior towards each other was not observed. On the third day of the experiment behavior of the fish in groups with fluoxetine and sertraline was different. In group with sertraline 25 % of fishes come up to average level. In group with fluoxetine fishes remained at the bottom of the aquarium. On the fifth day of the experiment in the group with sertraline 25 % of fishes had an abnormal craniocaudal position of the body in space.

Ключевые слова:

selective serotonin reuptake inhibitors (SSRI), Danio rerio, depression

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки


References

Dmitrieva T. B., Krasnova V. N., Neznanova N. G., Semke V. Yu, Tiganova A. S. Psychiatry: A National Guide. Moscow, GEOTAR-Media Publ., 2011. (In Russian)

Abreu M., Giacomini A. C., Koakoski G. Divergent effect of fluoxetine on the response to physical or chemical stressors in zebrafish. PeerJ., 2017, vol. 6, pp. 242–324.

Yauzina N. A., Komleva Yu. K., Salmina A. B. Sovremennye eksperimental’nye modeli depressii. Biomedicina,2013, vol. 1, pp. 61–71. (In Russian)

Fan C. C., Schork A. J., Brown T. T. Williams Syndrome neuroanatomical score associates with GTF2IRD 1in large-scale magnetic resonance imaging cohorts: a proof of concept for multivariate endophenotypes.Transl. Psychitry, 2018, vol. 8, pp. 114–121.

Webber C. Epistasis in Neuropsychiatric Disorders. Trends Genet., 217, vol. 33, pp. 256–265.

Hanell A., Marklund N. Structured evaluation of rodent behavioral tests used in drug discovery research.Front. Behav. Neurosci., 2014, vol. 8, pp. 252–258.

Abreu M., Giacomini A., Koakoski G. Effects of waterborne fluoxetine on stress response and osmoregulation in zebrafish. Env. Tox. Pharm., 2015, vol. 40, pp. 704–707.

Hinz R. C., de Polavieja G. G. Ontogeny of collective behavior reveals a simple attraction rule. Proc. Natl. Acad. Sci. USA., 2017, vol. 114, pp. 2295–2300.

Krause J., Ruxton G. D. (Eds). Living in Groups. Oxford, New York, Oxford University Press, 2002.

Eguiraun H., Casquero O., Sørensen A. J., Martinez I. Reducing the number of individuals to monitor shoaling fish systems — application of the Shannon entropy to construct a biological warning system model. Front. Physiol., 2018, vol. 9, pp. 493–499.

Katz Y., Tunstrom K., Ioannou C. C. Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl. Acad. Sci. USA., 2015, vol. 108, pp. 18720–18725.

Rosenthal S. B., Twomey C. R., Hartnett A. T. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl. Acad. Sci. USA., 2015, vol. 112, pp. 4690–4695.

Shelton D. S., Price B. C., Ocasio K. M., Martins E. P. Density and group size influence shoal cohesion, but not coordination in zebrafish (Danio rerio) . J. Comp. Psychol., 2015, vol. 129, pp. 72–77.

Miller N., Greene K., Dydinski A., Gerlai R. Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav. Brain. Res., 2011, vol. 240, pp. 192–196.

Tang W., Zhang G., Serluca F. Genetic architecture of collective behaviors in zebrafish. BioRxiv., 2018,vol. 40, pp. 102–126.

Fonseka T., Wen X.-Y., Foster J. Zebrafish models of major depressive disorders. J. Neurosc. Res., 2016,vol. 94, pp. 3–14.

Bridi D., Altenhofen S., Gonzalez J. B., Reolon G. K., Bonan C. D. Glyphosate and Roundup® alter morphology and behavior in zebrafish. Toxicology, 2017, vol. 392, pp. 32–39.

Schmidel A. J., Assmann K. L., Werlang C. C. Subchronic atrazine exposure changes defensive ehavior profile and disrupts brain acetylcholinesterase activity of zebrafish. Neurotoxicol. Teratol., 2014, vol. 44, pp. 62–69.

Bortolotto J. W., Cognato G. P., Christoff R. R. Long-term exposureto paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio). Zebrafish, 2014, vol. 11, pp. 142–153.

Strungaru S.-A., Plavan G., Ciobica A. Acute exposure to gold inducesfast changes in social behavior and oxidative str ess of zebrafish (Danio rerio). J. Trace Elem. Med. Biol., 2018, vol. 50, pp. 249–256.

Li X., Guo, J.-Y., Zhou H.-J. Behavioural effect of low-dose BPA on male zebrafish: Tuning of male mating competition and female mating preference during courtship process. Chemosphere, 2017, vol. 169, pp. 40–52.

Colman J. R., Baldwin D., Johnson L. L., Scholz N. L. Effects of the synthetic estrogen, 17alpha-ethinylestradiol,on aggression and courtship behavior in male zebrafish (Danio rerio). Aquat. Toxicol., 2009, vol, 91, pp. 346–354.

Filby A. L., Paull G. C., Searle F. Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: a mechanistic analysis. Environ. Sci. Technol., 2012, vol. 46, pp. 3472–3479.

Huntingford F., Turner A. K. (Eds). Animal conflict. London, New York, 1987.

Zabegalov K. N., Kolesnikova T. O., Khatsko S. L. Understanding zebrafish aggressive behavior. Behav. Processes, 2019, vol. 158, pp. 200–210.

Way G. P., Ruhl N., Snekser J. L. A comparison of methodologies to test aggression in zebrafish. Zebrafish,2015, vol. 12, pp. 144–151.

Ribeiro S., Torres T., Martins R. Toxicity screening of Diclofenac, Propranolol, Sertraline and Simvastatin using Danio rerio and Paracentrotus lividus embryo bioassays. Ecotoxicol. Environ. Safety, 2015, vol. 114, pp. 67–74.

Goldstein B., King N. The future of cell Biology: emerging model organisms. Trends Cell Biol., 2016, vol. 26, pp. 818–824.

Singer M., Oreschak K., Rhinehart Z. Anxiolytic effects of fluoxetine and nicotine exposure on exploratory behavior in zebrafish. PeerJ., 2016, vol. 16, pp. 19–29.

Westerfield M. Zebrafish Book: A Guide for the Laboratory Use of Zebrafish. The University of Oregon Press, Eugene, OR, 1993.

Hoffman E. J., Turner K. J., Fernandez J. M. Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene, CNTNAP2. Neuron, 2016, vol. 89, pp. 725–733.

Bernier R., Golzio C., Xiong B. Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 2014, vol. 158, pp. 263–276.

Durand C. M., Betancur C., Boeckers T. M. Mutations in the gene encoding the synaptic scaffolding protein SHANK3are associated with autism spectrum disorders. Nat. Genet., 2007, vol. 39, pp. 25–27.

Liu C.-X., Li C.-Y., Hu C.-C. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like Behaviors. Mol. Autism, 2018, vol. 9, pp. 23–29.

Choi J.-H., Jeong Y.-M., Kim S. Targeted knockout of achemokine-like gene increases anxiety and fear responses. Proc. Natl. Acad. Sci. USA., 2018, vol. 115, pp. 1041–1050.

Ariyasiri K., Choi T.-I., Kim O.-H. Pharmacological (ethanol) and mutation (sam2 KO) induced impairment of novelty preference in zebrafish quantified using a new three-chamber social choice task. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, vol. 88, pp. 53–65.

Autism Genome Project Consortium. Szatmari P., Paterson A. D., Zwaigenbaum L., Roberts W., Brian J., Liu X. Q., Vincent J. B., Skaug J. L., Thompson A. P., Senman L. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat. Genet., 2007, vol. 39, p. 319–328.

Patowary A., Won S. Y., Oh S. J. Family-basedexome sequencing and case-control analysis implicate CEP41 as an ASD gene. Transl. Psychiatry, 2019, vol. 4, pp. 38–43.

Petek E., Windpassinger C., Vincent J. B. Disruption of a novel gene (IMMP2L) by a breakpoint in 7q31 associated with Tourette syndrome. Am. J. Hum. Genet., 2001, vol. 68, pp. 848–858.

Weiss L. A., Escayg A., Kearney J. A. Sodium channels SCN1a, SCN2A and SCN3A in familial autism. Mol. Psychiatry, 2003, vol. 8, pp. 186–194.

Wolff M., Cassé-Perrot C., Dravet C. Severe myoclonic epilepsy ofinfants (Dravet syndrome): natural history and neuropsychological findings. Epilepsia, 2006, vol. 47, pp. 45–48.

Eachus H., Bright C., Cunliffe V. T. Disrupted-in-Schizophrenia–1 is essential for normal hypothalamicpituitary-interrenal (HPI) axis function.Hum. Mol. Genet., 2017, vol. 26, pp. 1992–2005.

Clark D. A., Mancama D., Kerwin R. W., Arranz M. J. Expression of the alpha1A-adrenergic receptor in schizophrenia. Neurosci. Lett., 2006, vol. 401, pp. 248–251.

Hung L. W., Neuner S., Polepalli J. S. Gating of social reward by oxytocin in the ventral tegmental area.Science, 2017, vol. 357, pp. 1406–1411.

Latendresse G., Elmore C., Deneris A. Selective serotonin reuptake inhibitors as first-line antidepressant therapy for perinatal depression. J. Midwifery Womens Health, 2017, vol. 62, pp. 317–328.

Wong D. T., Bymaster F. P., Engleman E. A. Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: Twenty years since its first publication. Life Sci., 1995,vol. 57, pp. 411–441.

Badenhorst N. J., Brand L., Harvey B. H. Long-term effects of prepubertal fluoxetine on behavior and monoaminergic stress response in stress sensitive Rats. Acta Neuropsychiatry, 2017, vol. 29, pp. 222–235.

Kroeze Y. Long-term consequences of chronic fluoxetine exposure on the expression of myelinationrelated genes in the rat hippocampus. Transl. Psychiatry.,2016, vol. 6, pp. 79–91.

Andrews M. H., Matthews S. G. Programming of the hypothalamo-pituitaryadrenal axis: Serotonergic involvement. Stress, 2004, vol. 7, pp. 15–27.

Oberlander T. F. Fetal serotonin signaling: Setting pathways for early childhood development and behavior. J. Adolesc. Health, 2012, vol. 51, pp. 9–16.

Heim C., Binder E. B. Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp. Neurol., 2012,vol. 233, pp. 102–111.

Loman M. M., Gunnar M. R. Early Experience, Stress, and Neurobehavioral Development Center. Early experience and the development of stress reactivity and regulation in children. Neurosci. Biobehav. Rev., 2010, vol. 34, pp. 867–876.

Zhang S., Liu X., Sun M. Reversal of reserpine-induced depression and cognitive disorder in zebrafish by sertraline and Traditional Chinese Medicine (TCM). Behav. Brain. Funct., 2018, vol. 14, pp. 13–19.

Pei S., Liu L., Zhong Z. Risk of prenatal depression and stress treatment: alteration on serotonin system of offspring through exposure to Fluoxetine. Sci. Rep., 2016, vol. 6, pp. 33822–33833.

Ziv L., Muto A., Schoonheim P. J. An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Mol. Psychiatry, 2013, vol. 18, pp. 681–691.

Vera-Chang M. N., Moon T. W., Trudeau V. L. Ancestral fluoxetine exposure sensitizes zebrafish to venlafaxine-induced reductions in cortisol and spawning. Endocrinology,2019, vol. 11, pp. 281–293.

Song C., Liu B. P., Zhang Y. P. Modeling consequences of prolonged strong unpredictable stress in zebrafish:Complex effects on behavior and physiology. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, vol. 2, pp. 384–394.

Загрузки

Опубликован

23.04.2020

Как цитировать

Proshin, S., Dzhabrailova , M. ., Kolesnik , Y. ., Saigidmagomedov , M. ., Dzeitov, A. . ., Khаlturina P., & Veizer , V. (2020). The influence of selective serotonin reuptake inhibitors on behavior of adult Danio rerio in experimental depression. Вестник Санкт-Петербургского университета. Медицина, 14(3), 183–193. https://doi.org/10.21638/spbu11.2019.301

Выпуск

Раздел

Внутренние болезни