REGENERATIVE THERAPY BY TISSUE-PROTECTIVE CYTOKINES AS A COMPONENT OF BACTERIAL CELLULOSE BASED WOUND DRESSINGS

Authors

  • Николай Григорьевич Венгерович Federal State Budgetary Institution “State Research Testing Institute of Military Medicine” Ministry of Defense of the Russian Federation, 4, ul. Lesoparkovaya, St. Petersburg, 195043, Russian Federation
  • Альберт Константинович Хрипунов Institute of Macromolecular Compounds Russian Academy of Sciences, 31, Bolshoy pr., St. Petersburg, 199004, Russian Federation
  • Анатольевна Эллина Рузанова «IPC «Silver Pharm», 45, liter A, ofi s 216, Industrialniy pr., St. Petersburg, 195279, Russian Federation
  • Игорь Михайлович Иванов Federal State Budgetary Institution “State Research Testing Institute of Military Medicine” Ministry of Defense of the Russian Federation, 4, ul. Lesoparkovaya, St. Petersburg, 195043, Russian Federation
  • Александр Сергеевич Никифоров Federal State Budgetary Institution “State Research Testing Institute of Military Medicine” Ministry of Defense of the Russian Federation, 4, ul. Lesoparkovaya, St. Petersburg, 195043, Russian Federation
  • Наталья Владимировна Иванова «IPC «Silver Pharm», 45, liter A, ofi s 216, Industrialniy pr., St. Petersburg, 195279, Russian Federation
  • Полина Сергеевна Баева «IPC «Silver Pharm», 45, liter A, ofi s 216, Industrialniy pr., St. Petersburg, 195279, Russian Federation
  • Альбина Александровна Ткаченко St. Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

Abstract

In experiments on rats we have conducted a comparative evaluation of eff ectiveness of tissue-protective
cytokines application (erythropoietin, ARA 290) per se and combined with antiseptic agent (dioxydine) as components of wound dressings based on Gluconacetobacter xylinus cellulose using third degree contact thermal injury model and residual thermal injury model. We’ve determined an optimal sorption time of peptide solutions by gel fi lms — 24 hours. We also show that local application of such wound dressings optimises wound process, reduces treatment time of granulating wounds during entire wound process, and mitigates risk of necessity for skin graft ing or at least provides proper preparation of a wound to skin graft ing. Refs 20. Figs 3. Таbles 2.

Keywords:

erythropoietin, ARA 290, bacterial cellulose, Gluconacetobacter xylinus, wound process, thermal injury, wound dressing

Downloads

Download data is not yet available.

References

Литература

Junker J.P., Philip J., Kiwanuka E. Assessing quality of healing in skin: review of available methods and devices // Wound Repair Regen. 2014. Vol. 1. P. 2–10.

Mayet N., Choonara Y. E., Kumar P. A comprehensive review of advanced biopolymeric wound healing systems // J. Pharm. Sci. 2014. Vol. 103, N 8. P. 2211–2230.

Pazyar N., Yaghoobi R., Rafiee E. Skin wound healing and phytomedicine: a review // Skin Pharmacol Physiol. 2014. Vol. 27, N 6. Р. 303–310.

Bilwani P. K. Unfavourable results in acute burn management // Indian J. Plast. Surg. 2013. Vol. 46, N 2. P. 428–433.

Whitney J. D. Overview: acute and chronic wounds // Nurs Clin North Am. 2005. Vol. 40, N 2. P. 191–205.

Brines M., Grasso G., Fiordaliso F. Erythropoietin mediates tissue protection through an erythropoietin and common β-subunit heteroreceptor // PNAS. 2004. Vol. 101. Р. 14907–14912.

Taoufi k E., Petit E., Divoux D. TNE receptor I sensitizes neurons to erythropoietin – and VEGFmediated neuroprotection aft er ischemic and excitotoxic injury // PNAS. 2008. Vol. 105, N 16. Р. 6185–6190 .

Erbayraktar Z., Erbayraktar S., Yilmaz O. Nonerythropoietic tissue protective compounds are highly eff ective facilitators of wound healing // Mol. Med. 2009. Vol. 15, N 7. Р. 235–241.

Ghezzi, P., Conklin D. Tissue-protective cytokines: structure and evolution // Methods Mol. Biol. 2013. Vol. 982. Р. 43–58.

Pulman K. G., Smith M., Mengozzi M. The erythropoietin-derived peptide ARA290 reverses mechanical allodynia in the neuritis model // Neuroscience. 2013. Vol. 13, N 233. Р. 174–183.

Brines M., Patel N.S., Villa P., Brines C. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105, N 31. Р. 10925–10930.

Назаренок Г. И., Сугорова И. Ю., Глянцев С. П. Рана. Повязка. Больной. М.: Медицина, 2002. 472 с.

Wojciech K., David J., Kawecki M. The Future Prospects of Microbial Cellulose in Biomedical Applications // Biomacromolecules. 2007. Vol. 8, N 1. P. 314–318.

Brown R., Malcolm Jr., Inder M. Cellulose: Molecular and Structural Biology, Selected Articles on the Synthesis, Structure, and Applications of Cellulose. Springer.: 2007. 355 p.

Попов В. А. Раневой процесс: нанобиотехнологии оптимизации. СПб.: СпецЛит, 2013. 199 с.

Brown M. Jr. The Biosynthesis of cellulose // Pure Appl. chem. 2002. Vol. 4. P. 1345–1373.

Венгерович Н. Г., Антоненкова Е. В., Андреев В. А., Зайцева О. Б., Хрипунов А. К., Попов В. А. Применение биоактивных наноматериалов при раневом процессе // Вестник Российской Военно-медицинской академии. СПб., 2011, № 1. С. 162–167.

Siebert N., Xu W., Grambow E. Erythropoietin improves skin wound healing and activates the TGF-β signaling pathway // Lab. Invest. 2011. Vol. 91, N 12. P. 1753–1765.

Андреев В. А., Венгерович Н. Г., Касанов К. Н., Попов В. А., Сбойчаков В. Б., Хрипунов А. К. Антибактериальная активность традиционных и наноантисептиков, перспектива их абсорбции на раневых покрытиях // Вестник Российской Военно-медицинской академии. СПб., 2012. № 3. С. 173–177.

Bohr S., Patel S. J., Shen K., Vitalo A. G. Alternative erythropoietin-mediated signaling prevents secondary microvascular thrombosis and infl ammation within cutaneous burns // PNAS. 2013. Vol. 110, N 9.Р. 3513–3518.


References

Junker J. P., Philip J., Kiwanuka E. Assessing quality of healing in skin: review of available methods and devices. Wound Repair Regen, 2014, vol. 1, pp. 2–10.

Mayet N., Choonara Y.E., Kumar P. A comprehensive review of advanced biopolymeric wound healing systems. J. Pharm. Sci., 2014, vol. 103, no. 8, pp. 2211–2230.

Pazyar N., Yaghoobi R., Rafi ee E. Skin wound healing and phytomedicine: a review. Skin Pharmacol Physiol., 2014, vol. 27, no. 6, pp. 303–310.

Bilwani P. K. Unfavourable results in acute burn management. Indian J. Plast. Surg., 2013, vol. 46, no. 2, pp. 428–433.

Whitney J. D. Overview: acute and chronic wounds. Nurs Clin North Am., 2005, vol. 40, no. 2,pp. 191–205.

Brines M., Grasso G., Fiordaliso F. Erythropoietin mediates tissue protection through an erythropoietin and common β-subunit heteroreceptor. PNAS, 2004, vol. 101, рp. 14907–14912.

Taoufi k E., Petit E., Divoux D. TNE receptor I sensitizes neurons to erythropoietin- and VEGF-mediated neuroprotection aft er ischemic and excitotoxic injury. PNAS, 2008, vol. 105, no. 16, pp. 6185–6190.

Erbayraktar Z., Erbayraktar S., Yilmaz O. Nonerythropoietic tissue protective compounds are highly eff ective facilitators of wound healing. Mol. Med., 2009, vol. 15, no. 7, pp. 235–241.

Ghezzi, P., Conklin D. Tissue-protective cytokines: structure and evolution. Methods Mol. Biol., 2013,vol. 982, pp. 43–58.

Pulman K. G., Smith M., Mengozzi M. Th e erythropoietin-derived peptide ARA290 reverses mechanical allodynia in the neuritis model. Neuroscience, 2013, vol. 13, no. 233, pp. 174–183.

Brines M., Patel N.S., Villa P., Brines C. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc. Natl. Acad. Sci, USA, 2008, vol. 105, no. 31, pp. 10925–10930.

Nazarenok G. I., Sugorova I. Ju., Gljancev S. P. Rana. Povjazka. Bol’noj [Wound. Вandage. Patient]. Moscow, Medicine Publ., 2002. 472 p. (In Russian)

Wojciech K., David J., Kawecki M. The Future Prospects of Microbial Cellulose in Biomedical Applications. Biomacromolecules, 2007, vol. 8, no. 1, pp. 314–318.

Brown R., Malcolm Jr., Inder M. Cellulose: Molecular and Structural Biology, Selected Articles on the Synthesis, Structure, and Applications of Cellulose. Springer, 2007. 355 p.

Popov V. A. Ranevoj process: nanobiotehnologii optimizacii [Nanobiotechnology for optimization wound process]. St. Petersburg, SpecLit Publ., 2013. 199 p. (In Russian)

Brown M. Jr. Th e Biosynthesis of cellulose. Pure Appl. chem., 2002, vol. 4, pp. 1345–1373.

Vengerovich N. G., Antonenkova E. V., Andreev V. A., Zajceva O. B., Hripunov A. K., Popov V. A. Primenenie bioaktivnyh nanomaterialov pri ranevom processe [Application of bioactive nanomaterials in a wound process]. Vestnik of the Russian Academy of Military Medicine. St. Petersburg, 2011, no. 1,pp. 162–167. (In Russian)

Siebert N., Xu W., Grambow E. Erythropoietin improves skin wound healing and activates the TGF-β signaling pathway. Lab. Invest., 2011, vol. 91, no. 12, pp. 1753–1765.

Andreev V. A., Vengerovich N. G., Kasanov K. N., Popov V. A., Sbojchakov V. B., Hripunov A. K. Antibakterial’naja aktivnost’ tradicionnyh i nanoantiseptikov, perspektiva ih absorbcii na ranevyh pokrytijah [Antibacterial activity of traditional and nano-antiseptics, the prospect of their absorption on wound dressings]. Vestnik of the Russian Academy of Military Medicine. St. Petersburg, 2012, no. 3, pp. 173–177. (In Russian)

Bohr S., Patel S.J., Shen K., Vitalo A.G. Alternative erythropoietin-mediated signaling prevents secondary microvascular thrombosis and infl ammation within cutaneous burns. PNAS, 2013, vol. 110, no. 9, pp. 3513–3518.

Published

2016-07-07

How to Cite

Венгерович, Н. Г., Хрипунов, А. К., Рузанова, А. Э., Иванов, И. М., Никифоров, А. С., Иванова, Н. В., … Ткаченко, А. А. (2016). REGENERATIVE THERAPY BY TISSUE-PROTECTIVE CYTOKINES AS A COMPONENT OF BACTERIAL CELLULOSE BASED WOUND DRESSINGS. Vestnik of Saint Petersburg University. Medicine, 11(1), 36–46. Retrieved from https://medicine-journal.spbu.ru/article/view/6007

Issue

Section

Surgery