Atriopathy and atrial fibrillation. Part I

Authors

  • Sergei Yashin Pavlov First St. Petersburg State Medical University, 6–8, ul. L’va Tolstogo, St. Petersburg, 197022, Russian Federation
  • Yuri Shubik St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2022.402

Abstract

Atrial fibrillation is the most common supraventricular tachycardia, the incidence of which increases with age. This arrhythmia is the consequenсe of multiple cardiac and noncardiac pathology. The most significant side effects of atrial fibrillation are thromboembolic complications. It is generally accepted that the source of these embolisms is a thrombus in the left atrial appendage. However, the risk of thromboembolism also occurs after the onset of atrial rhythm, which can lead to a more complex hemostasis mechanism in this disease. There is no unambiguous definition of the relationship between structural and functional changes in the atria and atrial fibrillation, which manifests itself in the appearance of treatment. Essential methods of catheter operations in patients with atrial fibrillation do not take into account the peculiarities of the rhythm mechanism, which has an influence on the treatment’s results. The first part of the review reflects the anatomy, histology, and physiology of atria, their main cellular elements, and electrophysiological features. The main experimental and clinical models of arrhythmia are described; as factors provoking atrial fibrillation and mechanisms of its stabilization. The analysis of electrophysiological and structural remodeling. The concepts of atriopathy and atrial cardiomyopathy are discussed, and classification is given. The mechanisms of hemostasis disorders and possible directions of correction are presented.

Keywords:

atriopathy, inflammation, stroke, cardiomyopathy, cardiomyocyte, left atrium, pathogenesis, remodeling, thromboembolism, atrial fibrillation, fibrosis

Downloads

Download data is not yet available.
 

References


References

Waldo A. L. Mechanisms of atrial fibrillation. J. Cardiovasc. Electrophysiol., 2003, vol. 14 (12 Suppl.),pp. 267–274. https://doi.org 10.1046/j.1540-8167.2003.90401.x

Berenfeld O., Jalife J. Mechanisms of atrial fibrillation: rotors, ionic determinants, and excitation frequency.Cardiol. Clin., 2014, vol. 32, no. 4, pp. 495–506. https://doi.org 10.1016/j.ccl.2014.07.001

Friedrichs G. S. Experimental models of atrial fibrillation/flutter. J. Pharmacol. Toxicol. Methods, 2000,vol. 43, no. 2, pp. 117–123. https://doi.org10.1016/s1056-8719(00)00098-8

Ryu K., Sahadevan J., Khrestian C. M., Stambler B. S., Waldo A. L. Frequency analysis of atrial electrograms identifies conduction pathways from the left to the right atrium during atrial fibrillationstudies in two canine models. J. Cardiovasc. Electrophysiol., 2009, vol. 20, no. 6, pp. 667–674. https://doi.org10.1111/j.1540-8167.2008.01403.x

Oka Y. A study on the experimental production of atrial fibrillation. Jpn. Circ. J., 1966, vol. 30, no. 6,pp. 675–692. https://doi.org10.1253/jcj.30.675

Chih-Sheng Lin, Ling-Ping Lai, Jiunn-Lee Lin, Yu-Ling Sun, Chih-Wei Hsu, Chien-Lung Chen,Simon J. T. Mao, Shoei K. Stephen Huang. Increased expression of extracellular matrix proteins in rapid atrial pacing-induced atrial fibrillation. Heart Rhythm, 2007, vol. 4, no. 7, pp. 938–949. https://doi.org10.1016/j.hrthm.2007.03.034

Ausma J., Wijffels M., Thoné F., Wouters L., Allessie M., Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation, 1997, vol. 96, no. 9, pp. 3157–3163.https://doi.org10.1161/01.cir.96.9.3157

Bosch R. F., Zeng X., Grammer J. B., Popovic K., Mewis C., Kühlkamp V. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc. Res., 1999, vol. 44, no. 1, pp. 121–131. https://doi.org 10.1016/s0008-6363(99)00178-9

Kottkamp H. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur.Heart. J., 2013, vol. 34, no. 35, pp. 2731–2738. https://doi.org.1093/eurheartj/eht194

Corradi D. Atrial fibrillation from the pathologist’s perspective. Cardiovasc. Pathol., 2014, vol. 23,no. 2, pp. 71–84. https://doi.org 10.1016/j.carpath.2013.12.001

Schotten U., Neuberger H. R., Allessie M. A. The role of atrial dilatation in the domestication of atrial fibrillation. Prog. Biophys. Mol. Biol., 2003, vol. 82, no. 1–3, pp. 151–162. https://doi.org 10.1016/s0079-6107(03)00012-9

Nattel S., Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J. Am. Coll. Cardiol., 2014, vol. 63, no. 22, pp. 2335–2345. https://doi.org 10.1016/j.jacc.2014.02.555

Gramley F., Lorenzen J., Plisiene J., Rakauskas M., Benetis R., Schmid M., Autschbach R., Knackstedt C., Schimpf T., Mischke K., Gressner A., Hanrath P., Kelm M., Schauerte P. Decreased plasminogen activator inhibitor and tissue metalloproteinase inhibitor expression may promote increased metalloproteinase activity with increasing duration of human atrial fibrillation. J. Cardiovasc. Electrophysiol.,2007, vol. 18, no. 10, pp. 1076–1082. https://doi.org 10.1111/j.1540-8167.2007.00906.x

Polyakova V., Miyagawa S., Szalay Z., Risteli J., Kostin S. Atrial extracellular matrix remodelling in patients with atrial fibrillation. J. Cell. Mol. Med., 2008, vol. 12, no. 1, pp. 189–208. https://doi.org10.1111/j.1582-4934.2008.00219.x

Frustaci A., Chimenti C., Bellocci F., Morgante E., Russo M. A., Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation, 1997, vol. 96, no. 4, pp. 1180–1184.https://doi.org 10.1161/01.cir.96.4.1180

Cheng W., Li B., Kajstura J., Li P., Wolin M. S., Sonnenblick E. H., Hintze T. H., Olivetti G., Anversa P.Stretch-induced programmed myocyte cell death. J. Clin. Invest., 1995, vol. 96, no. 5, pp. 2247–2259. https://doi.org 10.1172/JCI118280

Qin D., Mansour M. C., Ruskin J. N., Heist E. K. Atrial Fibrillation-Mediated Cardiomyopathy. Circ. Arrhythm. Electrophysiol., 2019, vol. 12, no. 12, p. e007809. https://doi.org 10.1161/CIRCEP.119.007809

Cardin S., Li D., Thorin-Trescases N., Leung T.-K., Thorin E., Nattel S. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and independent pathways.Cardiovasc. Res., 2003, vol. 60, no. 2, pp. 315–325. https://doi.org 10.1016/j.cardiores.2003.08.014

Aimé-Sempé C., Folliguet T., Rücker-Martin C., Krajewska M., Krajewska S., Heimburger M., Aubier M., Mercadier J. J., Reed J. C., Hatem S. N. Myocardial cell death in fibrillating and dilated human right atria. J. Am. Coll. Cardiol., 1999, vol. 34, no. 5, pp. 1577–1586. https://doi.org 10.1016/s0735-1097(99)00382-4

Yi S. L., Liu X. J., Zhong J. Q., Zhang Y. Role of caveolin-1 in atrial fibrillation as an anti-fibrotic signaling molecule in human atrial fibroblasts. PLoS ONE, 2014, vol. 9, no. 1, p. e85144. https://doi.org10.1371/journal.pone.0085144. eCollection 2014

Savelieva I., Camm J. Statins and polyunsaturated fatty acids for treatment of atrial fibrillation. Nat.Clin. Pract. Cardiovasc. Med., 2008, vol. 5, no. 1, pp. 30–41. https://doi.org 10.1038/ncpcardio1038

Guo Y., Lip G. Y., Apostolakis S. Inflammation in atrial fibrillation. J. Am. Coll. Cardiol., 2012, vol. 60,no. 22, pp. 2263–2270. https://doi.org 10.1016/j.jacc.2012.04.063

Jalife J. Novel upstream approaches to prevent atrial fibrillation perpetuation. Cardiol. Clin., 2014,vol. 32, no. 4, pp. 637–650. https://doi.org 10.1016/j.ccl.2014.07.004

Hayashi M., Takeshita K., Inden Y., Ishii H., Cheng X. W., Yamamoto K., Murohara T. Platelet activation and induction of tissue factor in acute and chronic atrial fibrillation: involvement of mononuclear cell-platelet interaction. Thromb. Res., 2011, vol. 128, no. 6, pp. e113-8. https://doi.org 10.1016/j.thromres.2011.07.013

Kallergis E. M., Manios E. G., Kanoupakis E. M., Mavrakis H. E., Kolyvaki S. G., Lyrarakis G. M., Chlouverakis G. L., Vardas P. E. The role of the postcardioversion time course of hs-CRP levels in clarifying the relationship between inflammation and persistence of atrial fibrillation. Heart, 2008, vol. 94, no. 2, pp. 200–204. https://doi.org 10.1136/hrt.2006.108688

Carnes C. A., Chung M. K., Nakayama T., Nakayama H., Baliga R. S., Piao S., Kanderian A., Pavia S., Hamlin R. L., McCarthy P. M., Bauer J. A., Van Wagoner D. R. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res., 2001, vol. 89, no. 6, p. E32-8. https://doi.org 10.1161/hh1801.097644

Shiroshita-Takeshita A., Schram G., Lavoie J., Nattel S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation, 2004, vol. 110, no. 16, pp. 2313–2319. https://doi.org 10.1161/01.CIR.0000145163.56529.D1

Sinno H., Derakhchan K., Libersan D., Merhi Y., Leung T. K., Nattel S. Atrial ischemia promotes atrial fibrillation in dogs. Circulation,2003, vol. 107, no. 14, pp. 1930–1936. https://doi.org 10.1161/01.CIR.0000058743.15215.03

Skalidis E. I., Hamilos M. I., Karalis I. K., Chlouverakis G., Kochiadakis G. E., Vardas P. E. Isolated atrial microvascular dysfunction in patients with lone recurrent atrial fibrillation. J. Am. Coll. Cardiol., 2008, vol. 51, no. 21, pp. 2053–2057. https://doi.org 10.1016/j.jacc.2008.01.055

Fox C. S., Parise H., D’Agostino R. B., Lloyd-Jones D. M., Vasan R. S., Wang T. J., Levy D., Wolf P. A., Benjamin E. J. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA, 2004,vol. 291, no. 23, pp. 2851–2855. https://doi.org 10.1001/jama.291.23.2851

Mahida S. Transcription factors and atrial fibrillation. Cardiovasc. Res., 2014, vol. 101, no. 2, pp. 194–202. https://doi.org 10.1093/cvr/cvt261

Sinner M. S., Ellinor P. T., Meitinger T., Benjamin E. J., Kääb S. Genome-wide association studies of atrial fibrillation: past, present, and future. Cardiovasc. Res., 2011, vol. 89, no. 4, pp. 701–709. https://doi.org 10.1093/cvr/cvr001

Clark K. L., Yutzey K. E., Benson D. W. Transcription factors and congenital heart defects. Annu. Rev.Physiol., 2006, vol. 68, pp. 97–121. https://doi.org 10.1146/annurev.physiol.68.040104.113828

Christ T., Boknik P., Wohrl S., Wettwer E., Graf E. M., Bosch R. F., Knaut M., Schmitz W., Ravens U.,Dobrev D. L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation, 2004, vol. 110, no. 17, pp. 2651–2657. https://doi.org 10.1161/01.CIR.0000145659.80212.6A

Chen C. L., Lin J. L., Lai L. P., Pan C. H., Huang S. K. S., Lin C. S. Altered expression of FHL1, CARP, TSC-22 and P311 provide insights into complex transcriptional regulation in pacing-induced atrial fibrillation. Biochim. Biophys. Acta, 2007, vol. 1772, no. 3, pp. 317–329. https://doi.org 10.1016/j.bbadis.2006.10.017

Nattel S., Shiroshita-Takeshita A., Brundel B. J., Rivard L. Mechanisms of atrial fibrillation: lessons from animal models. Prog. Cardiovasc. Dis., vol. 48, no. 1, pp. 9–28. https://doi.org 10.1016/j.pcad.2005.06.002

Mommersteeg M. T., Brown N. A., Prall O. W., De Vries C. G., Harvey R. P., Moorman A. F. M., Christoffels V. M. Pitx2c and Nkx2 — 5 are required for the formation and identity of the pulmonary myocardium.Circ. Res., 2007, vol. 101, no. 9, pp. 902–909. https://doi.org 10.1161/CIRCRESAHA. 107.161182

Johnston J. J., Olivos-Glander I., Killoran C., Elson E., Turner J. T., Peters K. F., Abbott M. H.,Aughton D. J., Aylsworth A. S., Bamshad M. J., Booth C., Curry C. J., David A., Dinulos M. B., Flannery D. B., Fox M. A., Graham J. M., Grange D. K., Guttmacher A. E., Hannibal M. C., Henn W., Hennekam R. C. M., Holmes L. B., Hoyme H. E., Leppig K. A., Lin A. E., MacLeod P., Manchester D. K.,Marcelis C., Mazzanti L., McCann E., McDonald M. T., Mendelsohn N. J., Moeschler J. B., Moghaddam B., Neri G., Newbury-Ecob R., Pagon R. A., Phillips J. A., Sadler L. S., Stoler J. M., Tilstra D.,Vockley C. M. W., Zackai E. H., Zadeh T. M., Brueton L., Black G. C. M., Biesecker L. G. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am. J. Hum. Genet., 2005, vol. 76, no. 4,pp. 609–622. https://doi.org 10.1086/429346

Grill C., Bergsteinsdottir K., Ogmundsdottir M. H., Pogenberg V., Schepsky A., Wilmanns M., Pingault V., Steingrímsson E. MITF mutations associated with pigment deficiency syndromes and melanoma have different effects on protein function. Hum. Mol. Genet., 2013, vol. 22, no. 21, pp. 4357–4367. https://doi.org 10.1093/hmg/ddt285

Roselli C., Rienstra M., Ellinor P. T. Genetics of Atrial Fibrillation in 2020: GWAS, Genome Sequencing, Polygenic Risk, and Beyond. Circ. Res., 2020, vol. 127, no. 1, pp. 21–33. https://doi.org 10.1161/CIRCRESAHA.120.316575

Brennan P., Donev R., Hewamana S. Targeting transcription factors for therapeutic benefit. Mol. Biosyst.,2008, vol. 4, no. 9, pp. 909–919. https://doi.org 10.1039/b801920g

Brigden W. Uncommon myocardial diseases; the non-coronary cardiomyopathies. Lancet, 1957,vol. 273, no. 7007, pp. 1179–1184. https://doi.org10.1016/s0140-6736(57)90159-9

Nagle R. E., Smith B., Williams D. O. Familial atrial cardiomyopathy with heart block. Br. Heart J.,1972, vol. 34, no. 2, p. 205.

Zipes D. P. Atrial fibrillation. A tachycardia-induced atrial cardiomyopathy. Circulation, 1997, vol. 95,no. 3, pp. 562–564. https://doi.org 10.1161/01.cir.95.3.562

Kottkamp H. Fibrotic atrial cardiomyopathy: a specific disease/syndrome supplying substrates for atrial fibrillation, atrial tachycardia, sinus node disease, AV node disease, and thromboembolic complications.J. Cardiovasc. Electrophysiol., 2012, vol. 23, no. 7, pp. 797–799. https://doi.org 10.1111/j.1540-8167.2012.02341.x

Marrouche N. F., Wilber D., Hindricks G., Jais P., Akoum N., Marchlinski F., Kholmovski E., Burgon N., Hu N., Mont L., Deneke T., Duytschaever M., Neumann T., Mansour M., Mahnkopf C., Herweg B.,Daoud E., Wissner E., Bansmann P., Brachmann J. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA, 2014,vol. 311, no. 5, pp. 498–506. https://doi.org 10.1001/jama.2014.3

Teh A. W., Kistler P. M., Lee G., Medi C., Heck P. M., Spence S. J., Morton J. B., Sanders P., Kalman J. M.Long-term effects of catheter ablation for lone atrial fibrillation: Progressive atrial electro-anatomic substrate remodeling despite successful ablation. Heart Rhythm, 2012, vol. 9, no. 4, pp. 473–480.
https://doi.org 10.1016/j.hrthm.2011.11.013

Goette A., Juenemann G., Peters B., Klein H. U., Roessner A., Huth C., Röcken C. Determinants and consequences of atrial fibrosis in patients undergoing open heart surgery. Cardiovasc. Res., 2002,vol. 54, no. 2, pp. 390–396. https://doi.org 10.1016/s0008-6363(02)00251-1

Boldt A., Wetzel U., Lauschke J., Weigl J., Gummert J., Hindricks G., Kottkamp H., Dhein S. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease.Heart, 2004, vol. 90, no. 4, pp. 400–405. https://doi.org 10.1136/hrt.2003.015347

Goette A., Kalman J. M., Aguinaga L., Akar J., Cabrera J. A., Chen S. A., Chugh S. S., Corradi D., D’Avila A.,Dobrev D., Fenelon G., Gonzalez M., Hatem S. N., Helm R., Hindricks G., Ho S. Y., Hoit B., Jalife J.,Hoon Kim Y. H., Lip G. Y. H., Ma C. S., Marcus G. M., Murray K., Nogami A., Sanders P., Uribe W., Van Wagoner D. R., Nattel S. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies:definition, characterization, and clinical implication. Heart Rhythm, 2017, vol. 14, no. 1, pp. e3–e40. https://doi.org 10.1016/j.hrthm.2016.05.028

Published

2023-05-31

How to Cite

Yashin, S., & Shubik, Y. . (2023). Atriopathy and atrial fibrillation. Part I. Vestnik of Saint Petersburg University. Medicine, 17(4), 254–271. https://doi.org/10.21638/spbu11.2022.402

Issue

Section

Cardiology