Influence of reproductively significant autoantibodies on the quality of oocytes, obtained embryos and the chances of implantation in Assisted Reproductive Technologies cycles. Literature review*

Авторы

  • Галина Сафарян St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Александр Гзгзян St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation ;D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 3, Mendeleevskaya lin., St. Petersburg, 199034, Russian Federation
  • Ляиля Джемлиханова St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation ;D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 3, Mendeleevskaya lin., St. Petersburg, 199034, Russian Federation
  • Дарико Ниаури St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation ; D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 3, Mendeleevskaya lin., St. Petersburg, 199034, Russian Federation
  • Александра Знобишина St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Елена Бородина St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Nguyen Cong Tuan St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2020.404

Аннотация

There is evidence suggesting that autoimmune mechanisms may influence fertility, manifesting as infertility or pregnancy loss. Numerous autoimmune diseases, including but not limited to systemic lupus erythematosus, anti-phospholipid syndrome and Hashimoto thyroiditis may be associated with infertility and pregnancy loss through different putative mechanisms. It is notable that fertility may be impaired in the presence of serum autoantibodies regardless of the presence of a clinically overt autoimmune disease. Autoimmunity may affect all stages of fertility via ovarian failure, implantation failure, and pregnancy loss. This review article will illustrate and discuss the available data on the link between chances of achieving pregnancy through Assisted Reproductive Technologies in real clinical setting in the presence of several autoantibodies affecting female reproductive system. Summarizing the available data from the world literature, it can be concluded that necessity exist in development of a reproductively significant antibodies line in application to direct, cross-over and cumulative assessment of the role of autoimmune antibodies carriage in the implementation of reproductive failures,bearing in mind new approaches to the strategy of overcoming autoimmune reproductive failure.

Ключевые слова:

autoantibodies, TPO, APA, ANA, α-enolase, laminin-1, Se-binding protein 1

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки


References

Kuharić M., Rozić D., Karner I. Thyroid Autoimmunity and Infertility. SEEMEDJ, 2017, vol. 1, no. 2,pp. 1–10.

Ombelet W., Cooke I., Dyer S., Serour G., Devroey P. Infertility and the provision of infertility medical services in developing countries. Human Reproduction Update, 2008, vol. 14, no. 6, pp. 605–621.

Chen X., Mo M.-L., Huang C.-Y., Diao L.-H., Li G.-G., Li Yu.-Ye., Lerner A., Shoenfeld Y., Zeng Y.Association of serum autoantibodies with pregnancy outcome of patients undergoing first IVF/ICSI reatment: A prospective cohort study. Journal of Reproductive Immunology, 2017, vol. 122, pp. 14–20.

Perminova S. G. Infertility in women with thyroid disease: Principles of diagnosis, management.Akusherstvo i ginekologiia: Novosti. Mneniia. Obuchenie, 2013, no. 2, pp. 18–24. (In Russian)

ESHRE ART Fact Sheet 2018. Available at: https://www.eshre.eu/Press-Room/Resources (accessed:20.01.2019).

Simon A., Laufer N. Assessment and treatment of repeated implantation failure (RIF). J. Assist. Reprod. Genet. 2012, no. 29, pp. 1227–1239.

Unuane D., Velkeniers B., Deridder S., Bravenboer B., Tournaye H., Brucker M. D. Impact of thyroid autoimmunity on cumulative delivery rates in in vitro fertilization/intracytoplasmic sperm injection patients. Fertil. Steril. 2016, no. 106, pp. 144–150.

Cline A. M., Kutteh W. H. Is there a role of autoimmunity in implantation failure after in-vitro fertilization?Curr. Opin. Obstet. Gynecol. 2009, no. 21, pp. 291–295.

Poppe K., Autin C., Veltri F., Kleynen P., Grabczan L., Rosenberg S., Ameye L. Thyroid Autoimmunity and ICSI Pregnancy Outcomes. J. Clin. Endocrinol. Metab., 2018, no. 103, vol. 5, pp. 1755–1766.

Sen A., Kushnir V. A., Barad D. H., Gleicher N. Endocrine autoimmune diseases and female infertility.Nat. Rev. Endocrinol., 2014, no. 10, vol. 1, pp. 37–50.

Monteleone P., Parrini D., Faviana P., Carletti E., Casarosa E., Uccelli A., Cela V., Genazzani A. R., Artini P. G. Female infertility related to thyroid autoimmunity: the ovarian follicle hypothesis. Am. J. Reprod. Immunol., 2011, no. 66, vol. 2, pp. 108–114.

Chen C. W., Huang Y. L., Tzeng C. R., Huang R. L., Chen C. H. Idiopathic low ovarian reserve is associated with more frequent positive thyroid peroxidase antibodies. Thyroid, 2017, no. 27, vol. 9,pp. 1194–1200.

Korevaar Tim I. M., Mínguez-Alarcón L., Messerlian C., Ralph A. de Poortere, Williams P. L., Broeren M. A., Hauser R., Souter I. C. Association of Thyroid Function and Autoimmunity with Ovarian Reserve in Women Seeking Infertility Care. Thyroid, 2018, no. 28, vol. 10, pp. 1349–1358.

Sauer R., Roussev R., Jeyendran R. S., Coulam C. B. Prevalence of antiphospholipid antibodies among women experiencing unexplained infertility and recurrent implantation failure. Fertil. Steril., 2010, no. 93, vol. 7, pp. 2441–2443.

Backos M., Rai R., Regan L. Antiphospholipid antibodies and infertility. Hum. Fertil., 2002, vol. 5,pp. 30–34.

Kikuchi K., Shibahara H., Hirano Y., Kohno T., Hirashima C., Suzuki T., Takamizawa S., Suzuki M. Antinuclear antibody reduces the pregnancy rate in the first IVF-ET treatment cycle but not the cumulative pregnancy rate without specific medication. Am. J. Reprod. Immunol., 2003, no. 50, pp. 363–367.

Taniguchi F. Results of prednisolone given to improve the outcome of in vitro fertilization-embryo transfer in women with antinuclear antibodies. J. Reprod. Med., 2005, no. 50, vol. 6, pp. 383–388.

Zhong Y., Ying Y., Wu H., Zhou C., Xu Y., Wang Q., Li J., Shen X., Li J. Relationship between Antithyroid Antibody and Pregnancy Outcome following in Vitro Fertilization and Embryo Transfer. Int. J. Med. Sci., 2012, no. 9, pp. 121–125.

Deroux A., Dumestre-Perard C., Dunand-Faure C., Bouillet L., Hoffmann P. Female Infertility and Serum Auto-antibodies: A Systematic Review. Clin. Rev. Allergy Immunol., 2017, no. 53, pp. 78–86.

Birkenfeld A., Mukaida T., Minichiello L., Jackson M., Kase N. G., Yemini M. Incidence of autoimmune antibodies in failed embryo transfer cycles. Am. J. Reprod. Immunol., 1994, no. 31, vol. 2–3, pp. 65–68.

Geva E., Amit A., Lerner-Geva L., Azem F., Yovel I., Lessing J. B. Autoimmune disorders: another possible cause for in vitro fertilization and embryo transfer failure. Hum. Reprod.,1995, no. 10, pp. 2560–2563.

Geva E., Yaron Y., Lessing J. B., Yovel I., Vardinon N., Burke M., Amit A. Circulating autoimmune antibodies may be responsible for implantation failure in in vitro fertilization. Fertil. Steril., 1994, no. 62,pp. 802–806.

Cubillos J., Lucena A., Lucena C., Mendoza J. C., Ruiz H., Arango A., Quiroga G., Ferro J., Lucena E. Incidence of autoantibodies in the infertile population. Early Pregnancy, 1997, no. 3, vol. 2,pp. 119–124.

Inagaki J., Matsuura E., Nomizu M., Sugiura-Ogasawara M., Katano K., Kaihara K., Kobayashi K., Yasuda T., Aoki K. IgG anti-laminin-1 autoantibody and recurrent miscarriages. Am. J. Reprod. Immunol.,2001, no. 45, pp. 232–238.

Ye Y., Kuhn, Kösters M., Arnold G. J., Ishikawa-Ankerhold H., Schulz C., Rogenhofer N., Thaler C. J., Mahner S., Fröhlich T., Jeschke U., von Schönfeldt V. Anti α-enolase antibody is a novel autoimmune biomarker for unexplained recurrent miscarriages.EBioMedicine,2019, no. 41, pp. 610–622.

Pala A., Coghi I., Spampinato G., Di Gregorio R., Strom R., Carenza L. Immunochemical and biological characteristics of a human autoantibody to human chorionic gonadotropin and luteinizing hormone. J. Clin. Endocrinol. Metab., 1988, no. 6, vol. 67, pp. 1317–1321.

Wass M., McCann K., Bagshawe K. D. Isolation of antibodies to HCG/LH from human sera. Nature,1978, no. 5669, vol. 274, pp. 369–370.

Zou S. H., Yang Z.-Z., Zhang P., Song D.-P., Li B., Wu R.-Y., Cong X. Autoimmune disorders affect the in vitro fertilization outcome in infertile women. Zhonghua Nan Ke Xue. 2008, no. 4, vol. 14,pp. 343–346.

Sharif K., Watad A., Bridgewood C., Kanduc D., Amital H., Shoenfeld Y. Insights into the autoimmune aspect of premature ovarian insufficiency. Best Pract. Res. Clin. Endocrinol. Metab, 2019, e:101323.

Vega M., Barad D. H., Yu Y., Darmon S. K., Weghofer A., Kushnir V. A., Gleicher N. Anti-mullerian hormone levels decline with the presence of antiphospholipid antibodies. American Journal of Reproductive Immunology, 2016, no. 76, vol. 4, pp. 333–337.

Sundblad V., Bussmann L., Chiauzzi V. A., Pancholi V., Charreau E. H. Alpha-enolase: a novel autoantigen in patients with premature ovarian failure. Clin. Endocrinol. (Oxf). 2006, no. 65, pp. 745–751.

Edassery S. L., Shatavi S. V., Kunkel J. P., Hauer C., Brucker C., Penumatsa K., Yu Y., Dias J. A., Luborsky J. L. Autoantigens in ovarian autoimmunity associated with unexplained infertility and premature ovarian failure. Fertil. Steril., 2010, no. 94, vol. 7, pp. 2636–2641.

Yu-Rice Y., Edassery S. L., Urban N., Hellstrom I., Hellstrom K. E., Deng Y., Li Y., Luborsky J. L. Selenium-Binding Protein 1 (SBP1) autoantibodies in ovarian disorders and ovarian cancer. Reproduction,2017, no. 153, vol. 3, pp. 277–284.

Luborsky J. L., Yu Y., Edassery S. L., Jaffar J., Yip Yu. Ye., Liu P., Hellstrom K. E., Hellstrom I. Autoantibodies to mesothelin in infertility. Cancer Epidemiol Biomarkers Prev., 2011, vol. 20, iss. 9, pp. 1970–1978.

Miko E., Meggyes M., Doba K., Farkas N., Bogar B., Barakonyi A., Szereday L., Szekeres-Barto J., Mezosi E. Characteristics of peripheral blood NK and NKT-like cells in euthyroid and hypothyroid women with autoimmunity, experiencing reproductive failure. J. Reprod. Immunol., 2017, no. 124,pp. 62–70.

Sher G., Fisch J. D., Maassarani G., Matzner W., Ching W., Chong P. Antibodies to phosphatidylethanolamine and phosphatidylserine are associated with increased natural killer cell activity in non-male factor infertility patients. Hum. Reprod., 2000, no. 15, pp. 1932–1936.

Fadeev V. V. According to the clinical recommendations of American thyroid association in thyroid pathology diagnosis and treatment during pregnancy and postpartum. Clinical and experimental thyroidology,2012, no. 1, vol. 8, pp. 7–18.

De Carolis С., Greco E., Guarino М. Antityroid antibodies and antiphospholipid syndrome: evidence of reduced fecundity and of poor pregnancy outcome in recurrent spontaneous abortions. Am. J. Reprod. Immunol., 2004, no. 52, pp. 263–266.

Lee Y. L., Ng H. P., Lau K. S., Liu W. M., O W. S., Yeung W. S. B., Kung A. W. C. Increased fetal abortion rate in autoimmune thyroid disease is related to circulating TPO autoantibodies in an autoimmune thyroiditis animal model. Fertil. Steril., 2009, vol. 91, iss. 5, pp. 2104–2109.

Vissenberg R., Manders U. D., Mastenbroek S., Fliers E., Afink G. B., Ris-Stalpers C., Goddijn M., Bisschop P. H. Pathophysiological aspects of thyroid hormone disorder/thyroid peroxidase autoantibodies and reproduction. Hum. Reprod. Update, 2015, no. 21, vol. 3, pp. 378–387.

Weghofer A., Himaya E., Kushnir V. A., Barad D. H., Gleicher N. The impact of thyroid function and thyroid autoimmunity on embryo quality in women with low functional ovarian reserve: a case-control study. Reprod. Biol. Endocrinol., 2015, no. 13, vol. 1, pp. 43–49.

Matalon S. T., Blank M., Levy Y., Carp H. J. A., Arad A., Burek L., Grunebaum E., Sherer Y., Ornoy A., Refetoff S., Weiss R. E., Rose N. R., Shoenfeld Y. The pathogenic role of anti-thyroglobulin antibody on pregnancy: evidence from an active immunization model in mice. Human Reproduction, 2003, no. 18,vol. 5, pp. 1094–1099.

Medenica S., Garalejia E., Arsic B., Medjo B., Bojovic Jovic D., Abazovic D., Vukovic R., Zarkovic M. Follicular fluid thyroid autoantibodies, thyrotropin, free thyroxine levels and assisted reproductive technology outcome. PLOS ONE,2018, no. 13, vol. 10, pp. e0206652.

Busnelli A., Paffoini A., Luigi F., Somigliana E. The impact of thyroid autoimmunity on IVF/ICSI outcome: a systematic review and meta-analysis. Human Reproduction Update, 2016, no. 22, vol. 6,pp. 775–790.

Ruiz-Irastorza G., Crowther M., Branch W., Khamastha M. A. Antiphopholipid syndrome.Lancet, 2010, no. 376, pp. 1498–1509.

Cervera R., Boffa M. C., Khamastha M. A., Hughes G. R. V. The Euro Phospholipid project: epidemiology of the antiphopholipid syndrome in Europe. Lupus, 2009, no. 18, pp. 889–893.

Silver R. M., Parker C. B., Reddy U. M., Goldenberg R., Coustan D., Dudley D. J., Saade G. R., Stoll B., Koch M. A., Conway D., Bukowski R., Rowland Hogue C. J., Pinar H., Moore J., Willinger M., Ware Branch D. Antiphospholipid Antibodies in Stillbirth. Obstet. Gynecol., 2013, no. 122, pp. 641–657.

Heilmann L., Schorsch M., Hahn T., Fareed J. Antiphospholipid syndrome and pre-eclampsia. Semin.Thromb. Hemost., 2011, no. 37, pp. 141–145.

Di Prima F. A. F., Valenti O., Hyseni E., Giorgio E., Faraci M., Renda E., De Domenico R., Monte S. Antiphospholipid Syndrome during pregnancy: The state of the art. J. Prenat. Med., 2011, no. 5, pp. 41–53.

Gleicher N., El-Roeiy A. The reproductive autoimmune failure syndrome. Am. J. Obstet. Gynecol.,1988, no. 159, pp. 223–227.

Blank M., Cohen J., Toder V., Shoenfeld Y. Induction of anti-phospholipid syndrome in naive mice with mouse lupus monoclonal and human polyclonal anti-cardiolipin antibodies. Proc. Natl. Acad. Sci.USA, 1991, no. 88, vol. 8, pp. 3069–3073.

Kaider B. D., Coulam C. B., Roussev R. G. Murine embryos as a direct target for some human autoantibodies in vitro. Human Reproduction, 1999, no. 14, pp. 2556–2561.

Sthoeger Z. M., Mozes E., Tartakovsky B. Anti-cardiolipin antibodies induce pregnancy failure by impairing embryonic implantation. Proceedings National Academy of Sciences USA, 1993, no. 90,pp. 6464–6467.

Tartakovsky B., Bermas B. L., Sthoeger Z., Shearer G. M., Mozes E. Defective maternal-fetal interaction in a murine autoimmune model. Human Reproduction, 1996, no. 11, pp. 2408–2411.

Parr M. B., Parr E. L. Immunohistochemical localization of immunoglobulins A, G and M in the mouse female genital tract. J. Reprod. Fert., 1985, no. 74, pp. 361–370.

Azem F., Geva E., Amit A., Lerner-Geva L., Schwartz T., Ben-Yosef T., et al. High levels of anticardiolipin antibodies in patients with abnormal embryo morphology who attended an in vitro fertilization program. Am. J. Reprod. Immunol., 1998, no. 39, pp. 161–163.

Matsubayashi H., Sugi T., Arai T., Shida M., Kondo A., Suzuki T., Izumi S., McIntyre J. A. IgG-antiphospholipid antibodies in follicular fluid of IVF-ET patients are related to low fertilization rate of their oocytes. Am. J. Reprod. Immunol., 2006, no. 55, vol. 5, pp. 341–348.

Coulam C. B., Roussev R. Chemical pregnancies: immunologic and ultrasonographic studies. Am. J. Reprod. Immunol., 2002, no. 48, vol. 5, pp. 323–328.

Di Simone N., Di Nicuolo F., D’Ippolito S., Castellani R., Tersigni C., Caruso A., Meroni P., Marana R. Antiphospholipid antibodies affect human endometrial angiogenesis. BiolReprod., 2010, no. 83, pp. 212–219.

D’Ippolito S., Meroni P. L., Koike T., Veglia M., Scambia G., Di Simone N. Obstetric antiphospholipid syndrome: A recent classification for an old defined disorder. Autoimmunity Reviews, 2014, no. 13,pp. 901–908.

Ahmed N., Shigidi M., Al Agib A. N., Abdelrahman H., Taha E. Clinical features and antinuclear antibodies profile among adults with systemic lupus erythematosus and lupus nephritis: A cross-sectional study. Pan. Afr. Med. J. 2017, no. 27, p. 114.

Ehrenstein M. R. Antinuclear antibodies and lupus: Causes and consequences. Rheumatology, 1999, no. 38, pp. 691–693.

Kuwana M. Circulating Anti-Nuclear Antibodies in Systemic Sclerosis: Utility in Diagnosis and Disease Subsetting.J. Nippon Med. Sch. Nippon Ika Daigaku Zasshi, 2017, no. 84, pp. 56–63.

Menor Almagro R., Rodríguez Gutiérrez J. F., Martín-Martínez M. A., Rodríguez Valls M. J., Aranda Valera C., de la Iglesia Salgado J. L. Association between antinuclear antibody titers and connective tissue diseases in a Rheumatology Department. Reumatol. Clin., 2017, no. 13, pp. 150–155.

Ravelli A., Felici E., Magni-Manzoni S., Pistorio A., Novarini C. Bozzola E., Viola S., Martini A. Patients with antinuclear antibody-positive juvenile idiopathic arthritis constitute a homogeneous subgroup irrespective of the course of joint disease. Arthritis Rheum., 2005, no. 52, pp. 826–832.

Zachou K., Rigopoulou E., Dalekos G. N. Autoantibodies and autoantigens in autoimmune hepatitis: Important tools in clinical practice and to study pathogenesis of thedisease. J. Autoimmune Dis., 2004,no. 1, p. 2.

Kaider A. S., Kaider B. D., Janowicz P. B., Roussev R. G. Immunodiagnostic evaluation in women with reproductive failure. Am. J. Reprod. Immunol., 1999, no. 42, vol. 6, pp. 335–346.

Lucena E., Cubillos J. Immune abnormalities in endometriosis comprising infertility in IVF patients.J. Reprod. Med., 1999, no. 44, pp. 458–464.

Ying Y., Zhong Y., Zhou C., Xu Y., Wang Q., Li J., Shen X., Wu H. Antinuclear antibodies predicts a poor IVF-ET outcome: Impaired egg and embryo development and reduced pregnancy rate. Immunol. Investig., 2012, no. 41, pp. 458–468.

Kaider B. D., Coulam C. B., Roussev R. G. Murine embryos as a direct target for some human autoantibodies in vitro. Hum. Reprod., 1999, no. 14, vol. 10, pp. 2556–2561.

Sthoeger Z., Mozes E., Tartakovsky B. Anti-cardiolipin antibodies induce pregnancy failure by impairing embryonic implantation. Proc. Natl. Acad. Sci. USA, 1993, no. 90, pp. 6464–6467.

Simerly C., Balczon R., Brinkley B. R. Microinjected kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes. J Cell Biol. 1990, no. 111, pp. 1491–1504.

Ying Y., Zhong Y. P., Zhou C. Q., et al. A further exploration of the impact of antinuclear antibodies on in vitro fertilization-embryo transfer outcome. Am. J. Reprod. Immunol., 2013, no. 70, vol. 3, pp. 221–229.

Fan J., Zhong Y., Chen C. Impacts of Anti-dsDNA Antibody on In Vitro Fertilization-Embryo Transfer and Frozen-Thawed Embryo Transfer. J. Immunol. Res., 2017, e:8596181.

Li Y., Wang Y., Ma Y., Lan Y., Jia C., Liang Y., Wang S. Investigation of the impact of antinuclear antibody on the outcome of in vitro fertilization/intracytoplasmic sperm injection treatment. Taiwan. J. Obstet. Gynecol., 2015, no. 54, pp. 742–748.

Zhu Q., Wu L., Xu B., Hu M.-H., Tong X.-H., Ji J.-J., Liu Y.-S. A retrospective study on IVF/ICSI outcome in patients with anti-nuclear antibodies: The effects of prednisone plus low-dose aspirin adjuvant treatment. Reprod. Biol. Endocrinol., 2013, no. 11, p. 98.

Burgeson R. E., Chiquet M., Deutzmann R., Ekblom P., Engel J., Kleinman H. K., Martin G. R., Meneguzzi G., Paulsson M., Sanes J. A new nomenclature for the laminins. Matrix Biol., 1994, no. 14,pp. 209–211.

Foidart J. M., Yaar M., Figueroa A., Wilk A., Brown K. S., Liotta L. A. Abortion in mice induced by intravenous injections of antibodies to type IV collagen or laminin. Am. J. Pathol., 1983, no. 10, pp. 346–357.

Korhonen M., Virtanen I. Immunohistochemical localization of laminin and fibronectin isoforms in human placental villi. J. Histochem. Cytochem., 2001, no. 49, pp. 313–322.

Carey S. W., Klein N. W. Autoantibodies to laminin and other basement membrane proteins in sera from monkeys with histories of reproductive failure identified by cultures of whole rat embryos. Fertil. Steril., 1989, no. 51, pp. 711–718.

Matalon S. T., Blank M., Matsuura E., Inagaki J., Nomizu M., Levi Y., Koike T., Shere Y., Ornoy A., Shoenfeld Y. Immunization of naive mice with mouse laminin-1 affected pregnancy outcome in a mouse model. Am. J. Reprod. Immunol., 2003, no. 50, pp. 159–165.

Inagaki J., Sugiura-Ogasawara M., Nomizu M., Nakatsuka M., Ikuta K., Suzuki N., Kaihara K., Kobayashi K., Yasuda T., Shoenfeld Y., Aoki K., Matsuura E. An association of IgG antilaminin-1 autoantibodies with endometriosis in infertile patients. Hum. Reprod., 2003, no. 18, pp. 544–549.

Caccavo D., Pellegrino N. M., Totaro I., Vacca M. P., Selvaggi L., Depalo R. Anti-laminin-1 antibodies in sera and follicular fluid of women with endometriosis undergoing in vitro fertilization. International Journal of Immunopathology and Pharmacology, 2011, no. 24, pp. 481–488.

Caccavo D., Pellegrino N. M, Nardelli C., Vergine S., Leone L., Marolla A., Vacca M. P., Depalo R. Antilaminin- 1 antibodies in serum and follicular fluid of women with Hashimoto’s thyroiditis undergoing in vitro fertilization.Int. J. Immunopathol. Pharmacol., 2016, no. 29, vol. 2, pp. 280–287.

Bae S., Kim H., Lee N., Won C., Kim H. R., Hwang Y. I., Song Y. W., Kang J. S., Lee W. J. Alpha-enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J. Immunol., 2012, no. 189, vol. 1, pp. 365–372.

Sarapik A., Haller-Kikkatalo K., Utt M., Teesalu K., Salumets A., Uibo R. Serum antiendometrial antibodies in infertile women — potential risk factor for implantation failure. Am. J. Reprod. Immunol.,2010, no. 63, vol. 5, pp. 349–357.

Walter M., Berg H., Leidenberger F. A., Schweppe K. W., Northemann W. Autoreactive epitopes within the human alpha-enolase and their recognition by sera from patients with endometriosis. J. Autoimmun., 1995, no. 8, vol. 6, pp. 931–945.

Amato F., Warnes G. M., Kirby C. A., Norman R. J. Infertility caused by hCG autoantibody. J. Clin. Endocrinol. Metab., 2002, no. 3, vol. 87, pp. 993–997.

Sidel’nikova V. M. Reccurent pregnancy loss. Triada-X, 2005, p. 304. (In Russian)

Zou S. H., Yang Z.-Z., Zhang P., Song D.-P., Li B., Wu R.-Y., Cong X. Autoimmune disorders affect the in vitro fertilization outcome in infertile women. Zhonghua Nan Ke Xue, 2008, no. 4, vol. 14,pp. 343–346.

Simpson E. R. Biology of aromatase in the mammary gland. J. Mammary Gland Biol. Neoplasia, 2000,no. 3, vol. 5, pp. 251–258.

Toda K., Simpson E. R., Mendelson C. R., Shizuta Y., Kilgore M. W. Expression of the gene encoding aromatase cytochrome P450 (CYP19) in fetal tissues. Mol. Endocrinol., 1994, no. 2, vol. 8, pp. 210–217.

Savina V. A. Ovarian aromatase р450 and normogonadotropic ovarian deficiency. Journal of Obstetrics and Women´s Diseases, 2012, no. 61, vol. 1, pp. 84–89. (In Russian)

Hosseini E., Mehraein F., Shahhoseini M., Karimian L., Nikmard F., Ashrafi M., Afsharian P., Aflatoonian R. Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis. J. Assist. Reprod. Genet., 2016, no. 33, vol. 8, pp. 1105–1113.

Barcelos I. D., Donabella F. C., Ribas C. P., Meola J., Ferriani R. A., Paro de Paz C. C., Navarro P. A. Down-regulation of the CYP19A1 gene in cumulus cells of infertile women with endometriosis.Reprod. Biomed Online, 2015, no. 30, vol. 5, pp. 532–541.

Yang F., Ruan Y. C., Yang Y. J., Wang K., Liang S.-S., Han Y.-B., Teng X.-M., Yang J.-Z. Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduction, 2015, no. 150, vol. 4, pp. 289–296.

Savina V. A., Kvetnoy I. M., Kleshhev M. A., Potin V. V., Rulev V. V., Tarasova M. A., Tkachenko N. N., Yarmolinskaia M. I. Ovarian aromatase p450 in polycystic ovary syndrome. Med. Akad. Z., 2012, no. 12, vol. 1, pp. 66–72. (In Russian)

Neal M. S., Younglai E. V., Holloway A. C., Foster W. G. Aromatase activity in granulosa cells as a predictor of pregnancy potential. Int. Congr. Ser., 2004, no. 1271, pp. 139–142.

Carpintero N. L., Suarez O. A., Mangas C. C., Varea C. G., Rioja R. G. Follicular steroid hormones as markers of oocyte quality and oocyte development potential. J. Hum. Reprod. Sci., 2014, no. 7, vol. 3, pp. 187–193.

Lamb J. D., Zamah A. M., Shen S., McCulloch C., Cedars M. I., Rosen M. P. Follicular fluid steroid hormone levels are associated with fertilization outcome after intracytoplasmic sperm injection. Fertil. Steril., 2010, no. 94, vol. 3, pp. 952–957.

Hamel M., Dufort I., Robert C., Gravel C., Leveille M.-C., Leader A., Sirard M.-A. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum. Reprod., 2008, no. 23, vol. 5, pp. 1118–1127.

Revelli A., Canosa S., Bergandi L., Skorokhod O. A., Biasoni V., Carosso A., Bertagna A., Maule M.,

Aldieri E., Diletta D’Eufemia M. D., Evangelista F., Colacurci N., Benedetto C. Oocyte polarized light microscopy, assay of specific follicular fluid metabolites, and gene expression in cumulus cells as different approaches to predict fertilization efficiency after ICSI. Reprod. Biol. Endocrinol., 2017, no. 15,vol. 1, p. 47.

Lazaros L., Xita N., Hatzi E., Takenaka A., Kaponis A., Makrydimas G., Sofikitis N., Stefos T., Zikopoulos K., Georgiou I. CYP19 gene variants affect the assisted reproduction outcome of women with polycystic ovary syndrome. Gynecol. Endocrinol., 2013, no. 29, vol. 5, pp. 478–482.

Pellatt L., Rice S., Dilaver N., Heshri A., Galea R., Brincat M., Brown K., Simpson E. R., Mason H. D. Anti-Müllerian hormone reduces follicle sensitivity to folliclestimulating hormone in human granulosa cells. Fertil. Steril., 2011, no. 5, vol. 96, pp. 1246–1314.

Janssen O. E., Mehlmauer N., Hahn S., Offner A. H., Gärtner R. High prevalence of autoimmune thyroiditis in patients with polycystic ovary syndrome. Eur. J. Endocrinol., 2004, no. 150, vol. 363–369.

Forges T., Monnier-Barbarino P., Faure G. C., Bene M. C. Autoimmunity and antigenic targets in ovarian pathology. Hum. Reprod. Update, 2004, no. 10, vol. 2, pp. 163–175.

Tuohy V. K., Altuntas C. Z. Autoimmunity and premature ovarian failure. Curr. Opin. Obstet. Gynecol.,2007, no. 19, vol. 4, pp. 366–369.

Damewood M. D., Zacur H. A., Hoffman G. J., Rock J. A. Circulating antiovarian antibodies in premature ovarian failure. Obstet. Gynecol., 1986, no. 68, vol. 6, pp. 850–854.

Fenichel P., Sosset C., Barbarino-Monnier P., Gobert B., Hieronimus S., Bene M., et al. Prevalence,specificity and significance of ovarian antibodies during spontaneous premature ovarian failure. Hum. Reprod., 1997, no. 12, vol. 12, pp. 2623–2628.

Meyer W. R., Lavy G., DeCherney A. H., Visintin I., Economy K., Luborsky J. L. Evidence of gonadal and gonadotropin antibodies in women with a suboptimal ovarian response to exogenous gonadotropin.Obstet. Gynecol., 1990, no. 75, vol. 5, pp. 795–799.

Luborsky J., Llanes B., Davies S., Binor Z., Radwanska E., Pong R. Ovarian autoimmunity: greater frequency of autoantibodies in premature menopause and unexplained infertility than in the general population. Clin. Immunol., 1999, no. 90, vol. 3, pp. 368–374.

Gzgzyan A. M. Autoimmune hypogonadism (pathogenesis, diagnosis, treatment). Dr. Sci. thesis. 2007.(In Russian)

Paszkowski T., Traub A. I., Robinson S. Y., McMaster D. Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin. Chim. Acta, 1995, no. 236, vol. 2, pp. 173–180.

Hardy C. M., Clydesdale G., Mobbs K. J. Development of mouse-specific contraceptive vaccines: infertility in mice immunized with peptide and polyepitope antigens. Reproduction, 2004, no. 128, vol. 4,pp. 395–407.

Yu-Rice Y., Edassery S. L., Urban N., Hellstrom I., Hellstrom K. E., Deng Y., Li Y., Luborsky J. L. Selenium-Binding Protein 1 (SBP1) autoantibodies in ovarian disorders and ovarian cancer. Reproduction,2017, no. 153, vol. 3, pp. 277–284.

Fang W., Goldberg M. L., Pohl N. M., Bi X., Tong C., Xiong B., Koh T. J., Diamond A. M., Yang W. Functional and physical interaction between the selenium-binding protein 1 (SBP1) and the glutathione peroxidase 1 selenoprotein. Carcinogenesis, 2010, no. 31, pp. 1360–1366.

Pohl N. M., Tong C., Fang W., Bi X., Li T., Yang W. Transcriptional regulation and biological functions of selenium-binding protein 1 in colorectal cancer in vitro and in nude mouse xenografts. PLoS One,2009, no. 4, e:7774.

Rosen D. G., Wang L., Atkinson J. N., Yu Y., Lu K. H., Diamandis E. P., Hellstrom I., Mok S. C., Liu J.,Bast R. C. Jr. Potential markers that complement expression of CA125 in epithelial ovarian cancer.Gynecol. Oncol., 2005, no. 99, pp. 267–277.

Scholler N., Fu N., Yang Y., Ye Z., Goodman G. E., Hellstrom K. E., Hellström I. Soluble member(s) of the mesothelin/megakaryocyte potentiating factor family are detectable in sera from patients with ovarian carcinoma. Proc. Natl. Acad. Sci. USA, 1999, no. 96, pp. 11531–11536.

McIntosh M. W., Drescher C., Karlan B., Scholler N., Urban N., Hellstrom K. E., Hellstrom I. Combining CA 125 and SMR serum markers for diagnosis and early detection of ovarian carcinoma. Gynecol. Oncol., 2004, no. 95, pp. 9–15.

Palmer C., Duan X., Hawley S., Scholler N., Thorpe J. D., Sahota R. A., Wong M. Q., Wray A., Bergan L. A., Drescher C. W., McIntosh M. W., Brown P. O., Nelson B. H., Urban N. Systematic evaluation of candidate blood markers for detecting ovarian cancer. PLoS ONE, 2008, no. 3, pp. e2633.

Ho M., Hassan R., Zhang J., Wang Q. C., Onda M., Bera T., Pastan I. Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients. Clin. Cancer Res., 2005, no. 11, pp. 3814–3820.

Hellstrom I., Friedman E., Verch T., Yang Y., Korach J., Jaffar J., Swisher E., Zhang B., Ben-Baruch G.,Tan M. C. B., Goedegebuure P., Hellstrom K. E. Anti-mesothelin antibodies and circulating mesothelin relate to the clinical state in ovarian cancer patients. Cancer Epidemiol. Biomarkers Prev., 2008, no. 17,pp. 1520–1526.

Luborsky J. L., Yu Y., Edassery S. L., et al. Autoantibodies to mesothelin in infertility. Cancer Epidemiol. Biomarkers Prev., 2011, no. 20, vol. 9, pp. 1970–1978.

Загрузки

Опубликован

25.01.2021

Как цитировать

Сафарян, Г., Гзгзян, А. ., Джемлиханова, Л. ., Ниаури, Д. ., Знобишина, А., Бородина, Е., & Cong Tuan, N. . (2021). Influence of reproductively significant autoantibodies on the quality of oocytes, obtained embryos and the chances of implantation in Assisted Reproductive Technologies cycles. Literature review*. Вестник Санкт-Петербургского университета. Медицина, 15(4), 256–273. https://doi.org/10.21638/spbu11.2020.404

Выпуск

Раздел

Акушерство и гинекология

Наиболее читаемые статьи этого автора (авторов)