MECHANISM OF PHYSICAL INTOLERANCE IN PATIENTS WITH CHRONIC HEART FAILURE

Authors

  • Андрей Григорьевич Обрезан St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation ; International Medical Centre “SOGAZ”, 8, Malaya Konyushennaya ul., St. Petersburg, 199000, Russian Federation
  • Дмитрий Николаевич Перуцкий Belgorod Regional Clinical Hospital St. Ioasaf, 8/9, ul. Nekrasova, Belgorod, 308000, Russian Federation
  • Александр Александрович Зарудский Belgorod Regional Clinical Hospital St. Ioasaf, 8/9, ul. Nekrasova, Belgorod, 308000, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu11.2017.402

Abstract

During the last five years the number of patients with chronic heart failure has increased from 38% to 54 %. The interest in such disease arises owing to the increase of life expectancy and the resultant increase in the population with chronic heart failure, in particular with preserved ejection fraction. The pathophysiologic alterations marking the progression of the set of symptoms that characterize heart failure have yet to be clearly determined and are under active investigation. In our review we tried to show the main mechanisms which are responsible for the development of symptoms in the patient with chronic heart failure. The most principle of them are: muscle fatigue, exercise intolerance and breathlessness. The pathophysiologic and pathogenetic mechanisms of these symptoms in the case of decreased ejection fraction and preserved ejection fraction of the left ventricle was comprehensivelly covered. Refs 46.

Keywords:

chronic heart failure, ejection fraction, breathless, muscle fatigue

Downloads

Download data is not yet available.
 

References


References

Hamilton A. L., Killian K. J., Summers E., Jones N. L. Muscle strength, symptom intensity, and exercis capacity in patients with cardiorespiratory disorders. Am. J. Respir. Crit. Care Med 1995, vol. 152, pp. 2021–2031.

Clark A. L., Sparrow J. L., Coats A. J. Muscle fatigue and dyspnea in chronic heart failure: two sides of the same coin? Eur. Heart Journal, 1995, vol. 16, pp. 49–52.

Lipkin D. P., Canepa-Anson R., Stephens M. R., Poole-Wilson P. A. Factors determining symptoms in heart failure: comparison of fast and slow exercise tests. Br. Heart J., 1986., vol. 55, pp. 439–445.

Witte K. K., Clark A. L. Cycle exercise causes a lower ventilatory response to exercise in chronic heart failure. Heart, 2005, vol. 91, pp. 225–226.

Davies S. W., Fussell A. L., Jordan S. L., Poole-Wilson P. A., Lipkin D. P. Abnormal diastolic filling

patterns in chronic heart failure: relationship to exercise capacity.Eur. Heart J., 1992, vol. 13, pp. 749–757.

Witte K. K., Nikitin N. P., De Silva R., Cleland J. G., Clark A. L. Exercise capacity and cardiac function assessed by tissue Doppler imaging in chronic heart failure. Heart, 2004, vol. 90, pp. 1144–1150.

Wilson J. R., Rayos G., Yeoh T. K., Gothard P. Dissociation between peak exercise oxygen consumption and hemodynamic dysfunction in potential heart transplant candidates. J. Am. Coll. Cardiol.,

1995, vol. 26,pp. 429–435.

Ciampi Q., Pratali L., Porta M. D., Petruzziello B., Manganiello V., Picano E. et al. Tissue Doppler

systolic velocity change during dobutamine stress echocardiography predicts contractile reserve and exercise tolerance in patients with heart failure. Eur. Heart J. Cardiovasc. Imaging, 2013, vol. 14, pp. 102–109.

Woods P. R., Olson T. P., Frantz R. P., Johnson B. D. Causes of breathing inefficiency during exercise in heart failure. Journal of Cardiac Failure, 2010, vol. 16, no. 10, pp. 835–842.

Agostoni P., Bussotti M., Cattadori G., Margutti E., Contini M., Muratori M., Marenzi G., Fiorentini

C. Gas diffusion and alveolar-capillary unit in chronic heart failure. Eur. Heart J. 2006, vol. 27, pp. 2538–2543.

Wasserman K., Zhang Y.-Y., Gitt A., Belardinelli R., Koike A., Lubarsky L., Agostoni P. G. Lung

function and exercises gas exchange in chronic heart failure. Circulation, 1997, vol. 96, pp. 2221–2227.

Agostoni P., Pellegrino R., Conca C., Rodarte J. R., Brusasco V. Exercise hyperpnea in chronic heart failure: relationships to lung stiffness and expiratory flow limitation. J. Appl. Physiol., 2002, vol. 92, pp. 1409–1416.

Bocchi E. A., Bacal F., Costa Auler J. O., Carvalho Carmone J. M., Bellotti G., Pillegi F. Inhaled nitric

oxide leading to pulmonale edema in stable severe heart failure. Am. J. Cardiol., 1994, vol. 74, pp. 70–72.

Ontrean M., Gay R., Greenberg B. Diminished endothelium-derived relaxing factor activiti on

experimental model of chronic heart failure. Circ. Res., 1991, vol. 69, pp. 1088–1096.

Agostoni P. G., Guazzi M., Bussotti M., Grazzi M., Palermo P., Marenzi G. Lack of improvement

of lung diffusing capacity following fluid withdrawal by ultrafiltration in chronic heart failure. J. Am. Coll.

Cardiol., 2000, vol. 36, pp. 1600–1604.

Chugh S. S., Chua T. P., Coats A. J. Peripheral chemoreflex in chronic heart failure: friend and foe.

Am. Heart J., 1996, vol. 132, pp. 900–904.

Chua T. P., Clark A. L., Amadi A. A., Coats A. J. Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J. Am. Coll. Cardiol., 1996, vol. 27, pp. 650–657.

Wasserman K., Beaver W. L., Sun X. G., Stringer W. W. Arterial H+ regulation during exercise in

humans. Respiratory physiology and neurobiology, 2011, vol. 178, no. 2, pp. 191–195.

Piepoli M., Ponikowski P., Clark A. L., Banasiak W., Capucci A., Coats A. J. A neural link to explain

the “muscle hypothesis” of exercise intolerance in chronic heart failure. Am. Heart J., 1999, vol. 137,

pp. 1050–1056.

Adreani C. M., Hill J. M., Kaufman M. P. Responses of group III and IV muscle afferents to dynamic exercise. J. Appl. Physiol., 1997, vol. 82, pp. 1811–1817.

Minotti J. R., Pillay P., Oka R., Wells L., Christoph L., Massie B. M. Skeletal muscle size: relationship to muscle function in heart failure. J. Appl. Physiol., 1993, vol. 75, pp. 373–381.

Libera L. D., Vescovo G., Volterrani M. Physiological basis for contractile dysfunction in heart

failure. Current Pharmaceutical Design, 2008, vol. 14, pp. 2572–2581.

Massie B., Conway M., Yonge R., Frostick S., Ledingham J., Sleight P. Skeletal muscle metabolism in patients with congestive heart failure: relation to clinical severity and blood flow. Circulation, 1987, vol. 76,pp. 1009–1019.

Schulze P. C., Linke A., Schoene N., Winkler S. M., Adams V., Conradi S., Busse M., Schuler G.,

Hambrecht R. Functional and morphological skeletal muscle abnormalities correlate with reduced

electromyographic activity in chronic heart failure. Eur. J. Cardiovasc. Prev. Rehabil., 2004, vol. 11, no. 2,pp. 155–161.

Middlekauff H. R. Making the case for skeletal myopathy as the major limitation of exercise capacity in heart failure. Circulation Heart Failure, 2010, vol. 3, no. 4, pp. 537–546.

Massie B. M., Simonini A., Sahgal P., Wells L., Dudley G. A. Relation of systemic and local muscle

exercise capacity to skeletal muscle characteristics in men with congestive HF. J. Am. Coll. Cardiol., 1996,vol. 27, pp. 140–145.

Williams A. D., Selig S., Hare D. L., Hayes A., Krum H., Patterson J., Geerling R. H., Toia D.,

Carey M. F. Reduced exercise tolerance in CHF may be related to factors other than impaired skeletal muscle

oxidative capacity. J. Card. Failure, 2004, vol. 10, pp. 141–148.

Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol., 1992, vol. 20, pp. 248–254.

Anker S. D., Chua T. P., Ponikowski P., Harrington D., Swan J. W., Kox W. J., Poole-Wilson P. A.,

Coats A. J. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance

for cardiac cachexia.Circulation, 1997, vol. 96, pp. 526–534.

Kontoleon P. E., Anastasiou-Nana M. I., Papapetrou P. D., Alexopoulos G., Ktenas V., Rapti A. C.,

Tsagalou E. P., Nanas J. N. Hormonal profile in patients with congestive heart failure. Int. J. Cardiol., 2003,vol. 87, no. 2, pp. 179–183.

Sullivan M. J., Knight J. D., Higginbotham M. B. Relation between central and peripheral

hemodynamics during exercise in patients with chronic heart failure. Circulation, 1989, vol. 80, pp. 769–781.

Wilson J. R., Mancini D. M., Dunkman W. B. Exertional fatigue due to skeletal muscle dysfunction in patients with heart failure. Circulation, 1993, vol. 87, pp. 470–475.

Duscha B. D., Kraus W. E., Keteyian S. J., Sullivan M. J., Green H. J., Schachat F. H., Pippen A. M.,

Brawner C. A., Blank J. M., Annex B. H. Capillary density of skeletal muscle: a contributing mechanism for

exercise intolerance in class II–III chronic heart failure independent of other peripheral alterations. J. Am.

Coll. Cardiol., 1999, vol. 33, pp. 1956–1963.

Manetos C., Dimopoulos S., Tzanis G., Vakrou S., Tasoulis A., Kapelios C., Agapitou V., Ntalianis A.,Terrovitis J., Nanas S. Skeletal muscle microcirculatory abnormalities are associated with exercise intolerance,

ventilatory inefficiency, and impaired autonomic control in heart failure. J. Heart Lung Transplant., 2011, vol. 30, no. 12, pp. 1403–1408.

Clark A. L., Poole-Wilson P. A., Coats A. J. Exercise limitation in chronic heart failure: central role of the periphery. J. Am. Coll. Cardiol., 1996, vol. 28, pp. 1092–1102.

Kitzman D. W., Higginbotham M. B., Cobb F. R., Sheikh K. H., Sullivan M. J. Exercise intolerance

in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling

mechanism. J. Am. Coll. Cardiol., 1991, vol. 17, pp. 1065–1072.

Haykowsky M. J., Brubaker P. H., John J. M., Stewart K. P., Morgan T. M., Kitzman D. W. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J. Am. Coll. Cardiol.,2011, vol. 58, no. 3, pp. 265–274.

Borlaug B. A., Melenovsky V., Russell S. D., Kessler K., Pacak K., Becker L. C., Kass D. A. Impaired

chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved

ejection fraction. Circulation, 2006, vol. 114, pp. 2138–2147.

Little W. C., Borlaug B. A. Exercise intolerance in heart failure with preserved ejection fraction. Circ. Heart Fail., 2015, vol. 8, pp. 233–235.

Abudiab M. M., Redfield M. M., Melenovsky V., Olson T. P., Kass D. A., Johnson B. D., Borlaug B. A.Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection

fraction. Eur. J. Heart Fail., 2013, vol. 15, pp. 776–785.

Wagner P. D. Determinants of maximal oxygen transport and utilization. Annu. Rev. Physiol., 1996,vol. 58, pp. 21–50.

Dhakal B. P., Malhotra R., Murphy R. M., Pappagianopoulos P. P., Baggish A. L., Weiner R. B.,

Houstis N. E., Eisman A. S., Hough S. S., Lewis G. D. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction. Circ. Heart Fail., 2015, vol. 8, pp. 286–294.

Santos M., Opotowsky A. R., Shah A. M., Tracy J., Waxman A. B., Systrom D. M. Central cardiac

limit to aerobic capacity in patients with exertional pulmonary venous hypertension: implications for heart

failure with preserved ejection fraction. Circ. Heart Fail., 2015, vol. 8, pp. 278–285.

Kitzman D. W., Nicklas B., Kraus W. E., Lyles M. F., Eggebeen J., Morgan T. M., Haykowsky M.

Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved

ejection fraction. American Journal of Physiology. Heart and Circulatory Physiology, 2014, vol. 306, no. 9,pp. 1364–1370.

Haykowsky M., Kouba E. J., Brubaker P. H., Nicklas B. J., Eggebeen J., Kitzman D. W. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved

ejection fraction. Am. J. Cardiol., 2014, vol. 113, pp. 1211–1216.

Borlaug B. A., Olson T. P., Lam C. S. P., Flood K. S., Lerman A., Johnson B. D., Redfield M. M. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J. Am. Coll.

Cardiol.,2010, vol. 56, no. 11, pp. 845–854.

Published

2017-12-05

How to Cite

Обрезан, А. Г., Перуцкий, Д. Н., & Зарудский, А. А. (2017). MECHANISM OF PHYSICAL INTOLERANCE IN PATIENTS WITH CHRONIC HEART FAILURE. Vestnik of Saint Petersburg University. Medicine, 12(4), 314–325. https://doi.org/10.21638/11701/spbu11.2017.402

Issue

Section

Internal medicine

Most read articles by the same author(s)