Future directions in genome-wide association studies of schizophrenia spectrum disorders

Authors

  • Nataliia V. Zakharova Pirogov Russian National Research Medical University, 1, Ostrovitianov ul., Moscow, 117997, Russian Federation ; Psychiatric Clinical Hospital 1 named after N. A. Alekseev, 2, Zagorodnoe sh., Moscow, 115191, Russian Federation
  • Igor I. Nizamutdinov Genotek Ltd., 17, build 1, Nastavnicheskii per., Moscow, 105120, Russian Federation
  • Veronika V. Musatova Genotek Ltd., 17, build 1, Nastavnicheskii per., Moscow, 105120, Russian Federation
  • Valery V. Ilinsky Genotek Ltd., 17, build 1, Nastavnicheskii per., Moscow, 105120, Russian Federation ; Institute of Biomedical Chemistry, 10, Pogodinskaya street, Moscow, 119121, Russian Federation
  • Anna Yu. Morozova Psychiatric Clinical Hospital 1 named after N. A. Alekseev, 2, Zagorodnoe sh., Moscow, 115191, Russian Federation ; V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23, Kropotkinskii per., Moscow, 119991, Russian Federation
  • Mariia O. Bocharova King’s College London, 16, De Crespigny Park, London, SE5 8AF, UK
  • Aleksandr M. Reznik Moscow State University of Food Production, 11, Volokolamskoe sh., Moscow, 125080, Russian Federation
  • Georgiy P. Kostyuk Moscow State University of Food Production, 11, Volokolamskoe sh., Moscow, 125080, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2018.107

Abstract

The rapid expansion of diagnostic technologies in general and of the genome-wide association studies method in particular brings us closer to the understanding of the etiopathogenetic fundamentals of endogenous mental disorders. The amount of accumulated experience in genome-wide association studies allows one to assess the importance of specific genetic markers in the development of the diseases of interest. The introduction of screening systems and the assessment of disease prognosis is yet to be implemented, due to conceptual and methodological contradictions. The present review aims at analyzing the current progress in the field of genetic studies of schizophrenia spectrum disorders. The prospects and limitations of existing methods and the obstacles to the efficient translational application of the achievements of GWAS and candidate gene studies are discussed. Along with the still poor understanding of the etiology and pathogenesis of schizophrenia spectrum disorders, such issues as the ongoing debate regarding the correct classification, as well as the large degree of symptom heterogeneity within this group of conditions, remain a cornerstone in biological
research. A more accurate approach to phenotyping, including the application of deep phenotyping techniques, is required to form more homogenous samples for future genome-wide association and candidate gene studies of schizophrenia spectrum disorders.

Keywords:

schizophrenia, genetic marker, single nucleotide polymorphism, genome-wide association study, phenotyping

Downloads

Download data is not yet available.
 

References


References

Gurovich I., Lyubov E. The economic burden of schizophrenia in Russia. European Psychiatry, 2002, vol. 17, p. 149.

Goldner E. M., Hsu L., Waraich P., Somers J. M. Prevalence and incidence studies of schizophrenic disorders: a systematic review of the literature. Can. J. Psychiatry, 2002, vol. 47, pp. 833–843.

Russia’ 2015. Statistical pocketbook. Moscow, 2015. 62 p.

Perechen’ zhiznenno neobkhodimykh i vazhneishikh lekarstvennykh preparatov dlia meditsinskogo primeneniia na 2017 god [Vital and Essential Drugs List in 2017]. Available at: http://static.government.ru/media/files/CCfPFzQvKjOEoRT5z9SeobntD7hnmX2t.pdf (accessed: 10.04.17). (In Russian)

Lieberman J. A., Stroup T. S., McEvoy J. P., Swartz M. S., Rosenheck R. A., Perkins D. O., Keefe R. S., Davis S. M., Davis C. E., Lebowitz B. D., Severe J., Hsiao J. K. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med., 2005, vol. 353, no. 12, pp. 1209–1223.

McEvoy J. P. An overview of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. CNS Spectr., 2006, vol. 11, no. 7 (Suppl. 7), pp. 4–8.

Krystal J. H., D’Souza D. C. D-serine and the therapeutic challenge posed by the N-methyl-D-aspartate antagonist model of schizophrenia. Biol. Psychiatry, 1998, vol. 44, pp. 1075–1076.

Duncan G. E., Zorn S., Lieberman J. A. Mechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia. Mol. Psychiatry, 1999, vol. 4, pp. 418–428.

Richelson E. Neuroleptic binding to human brain receptors: relation to clinical effects. Ann. N. Y. Acad. Sci.,1988, vol. 537, pp. 435–4

Sullivan P. F., Kendler K. S., Neale M. C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry, 2003, vol. 60, pp. 1187–1192.

Reznik A. M., Kostiuk G. P., Khannanova A. N. Problemy predposylok shizofrenii po dannym molekuliarno-geneticheskikh issledovanii [Vulnerability for schizophrenia on the basis of molecular genetics investigations]. Social and Clinical Psychiatry, 2016, vol. 26, no. 3, pp. 101–108. (In Russian)

Allen N. C., Bagade S., McQueen M. B., Ioannidis J. P., Kavvoura F. K., Khoury M. J., Tanzi R. E., Bertram L. Systematic Meta-Analyses and Field Synopsis of Genetic Association Studies in Schizophrenia: The SzGene Database. Nat Genet, 2008, vol. 40, no. 7, pp. 827–834.

Arnedo J., Svrakic D. M., Del Val C., Romero-Zaliz R., Hernández-Cuervo H. Molecular Genetics of Schizophrenia Consortium, et al. Uncovering the hidden risk architecture of the schizophrenias: confirmation in three independent genome-wide association studies. Am. J. Psychiatry, 2015, vol. 172, pp. 139–153.

Pearson T. A., Manolio T. A. How to interpret a genome-wide association study.JAMA, 2008, vol. 299, pp. 1335–1344.

Tiganov A. S., Iurov Iu. B., Vorsanova S. G., Iurov I. Iu. Nestabil’nost’ genoma golovnogo mozga: etiologiia, patogenez i novye biologicheskie markery psikhicheskikh boleznei [Genomic instability in the brain: etiology, pathogenesis and new biological markers of psychiatric disorders]. Vestnik Rossiiskoi akademii meditsinskikh nauk [Annals of the Russian academy of medical sciences], 2012, vol. 67, no. 9, pp. 45–53. (In Russian)

Iurov I. Iu., Vorsanova S. G., Iurov Iu. B. Genomnye i khromosomnye bolezni tsentral’noi nervnoi sistemy: molekuliarnye i tsitogeneticheskie aspekty [Genome and chromosome diseases of central nervous system]. Moscow, Medpraktika-M Publ., 2014. 384 p. (In Russian)

Schneider M., Armando M., Pontillo M., Vicari S., Debbané M., Schultze-Lutter F., Eliez S. Ultra high risk status and transition to psychosis in 22q11.2 deletion syndrome. World Psychiatry, 2016, vol. 15, pp. 259–265.

Liu J., Li M., Su B. GWAS-identified schizophrenia risk SNPs at TSPAN18 are highly diverged between Europeans and East Asians. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2016, vol. 171, pp. 1032–1040.

Shi H., Tan S.-J., Zhong H., Hu W., Levine A., Xiao C.-J., Peng Y., Qi X. B., Shou W. H., Ma R. L., Li Y., Su B., Lu X. Winter temperature and UV are tightly linked to genetic changes in the p53 tumor suppressor pathway in Eastern Asia. Am. J. Hum. Genet., 2009, vol. 84, pp. 534–541.

Murdoch J. D., Speed W. C., Pakstis A. J., Heffelfinger C. E., Kidd K. K. Worldwide population variation and haplotype analysis at the serotonin transporter gene SLC6A4 and implications for association studies. Biol. Psychiatry, 2013, vol. 74, pp. 879–889.

Li M., Luo X.-J., Rietschel M., Lewis C. M., Mattheisen M., Müller-Myhsok B., Jamain S., Leboyer M., Landén M., Thompson P. M., Cichon S., Nöthen M. M., Schulze T. G., Sullivan P. F., Bergen S. E., Donohoe G., Morris D. W., Hargreaves A., Gill M., Corvin A., Hultman C., Toga A. W., Shi L., Lin Q., Shi H., Gan L., Meyer-Lindenberg A., Czamara D., Henry C., Etain B., Bis J. C., Ikram M. A., Fornage M., Debette S., Launer L. J., Seshadri S., Erk S., Walter H., Heinz A., Bellivier F., Stein J. L., Medland S. E., Arias Vasquez A., Hibar D. P., Franke B., Martin N. G., Wright M. J., Su B. Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility. Mol. Psychiatry, 2014, vol. 19, pp. 452–461.

Luo X.-J., Mattheisen M., Li M., Huang L., Rietschel M., Børglum A. D., Als T. D., van den Oord E. J., Aberg K. A., Mors O., Mortensen P. B., Luo Z., Degenhardt F., Cichon S., Schulze T. G., Nöthen M. M., Su B., Zhao Z., Gan L., Yao Y. G. Systematic Integration of Brain eQTL and GWAS Identifies ZNF323 as a Novel Schizophrenia Risk Gene and Suggests Recent Positive Selection Based on Compensatory Advantage on Pulmonary Function. Schizophr. Bull., 2015, vol. 41, pp. 1294–1308.

Henn B. M., Cavalli-Sforza L. L., Feldman M. W. The great human expansion. Proc. Nat. Acad. Sci. USA, 2012, vol. 109, pp. 17758–17764.

World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Diagnostic Criteria for Research. Geneva, 1993. 263 p.

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: 5th ed.: DSM-5. ManMag, 2003.

American Psychiatric Association, American Psychiatric Association. DSM-5 Task Force. American Psychiatric Association: Diagnostic and statistical manual of mental disorders. 5th ed. N. Y., 2013.

Taylor M. A., Fink M. Catatonia in psychiatric classification: a home of its own. Am. J. Psychiatry, 2003, vol. 160, no. 7, pp. 1233–1241.

Pommepuy N., Januel D. Catatonia: resurgence of a concept. A review of the international literature. Encephale, 2002, vol. 28, no. 6 (Pt. 1), pp. 481–492.

Sanislow C. A., Pine D. S., Quinn K. J., Kozak M. J., Garvey M. A., Heinssen R. K., Wang P. S., Cuthbert B. N. Developing constructs for psychopathology research: research domain criteria.J. Abnorm. Psychol., 2010, vol. 119, pp. 631–639.

Doi N., Hoshi Y., Itokawa M., Yoshikawa T., Ichikawa T., Arai M., Usui Ch., Tachikawa H. Paradox of schizophrenia genetics: is a paradigm shift occurring? Behav. Brain Funct., 2012, vol. 8, p. 28.

Harrison P. J. Recent genetic findings in schizophrenia and their therapeutic relevance. J. Psychopharmacol., 2015, vol. 29, pp. 85–96.

Carcone D., Ruocco A. C. Six Years of Research on the National Institute of Mental Health’s Research Domain Criteria (RDoC) Initiative: A Systematic Review. Front. Cell. Neurosci., 2017, vol. 11, p. 46.

Moselhy H., Eapen V., Akawi N. A., Younis A., Salih B., Othman A. R., Yousef S., Clarke R. A., Ali B. R. Secondary association of PDLIM5 with paranoid schizophrenia in Emirati patients. Meta Gene, 2015, vol. 5, pp. 135–139.

Forstner A. J., Hecker J., Hofmann A., Maaser A., Reinbold C. S., Mühleisen T. W., Leber M., Strohmaier J., Degenhardt F., Treutlein J., Mattheisen M., Schumacher J., Streit F., Meier S., Herms S., Hoffmann P., Lacour A., Witt S. H., Reif A., Müller-Myhsok B., Lucae S., Maier W., Schwarz M., Vedder H., Kammerer-Ciernioch J., Pfennig A., Bauer M., Hautzinger M., Moebus S., Schenk L. M., Fischer S. B., Sivalingam S., Czerski P. M., Hauser J., Lissowska J., Szeszenia-Dabrowska N., Brennan P., McKay J. D., Wright A., Mitchell P. B., Fullerton J. M., Schofield P. R., Montgomery G. W., Medland S. E., Gordon S. D., Martin N. G., Krasnov V., Chuchalin A., Babadjanova G., Pantelejeva G., Abramova L. I., Tiganov A. S., Polonikov A., Khusnutdinova E., Alda M., Cruceanu C., Rouleau G. A., Turecki G., Laprise C., Rivas F., Mayoral F., Kogevinas M., Grigoroiu-Serbanescu M., Becker T., Schulze T. G., Rietschel M., Cichon S., Fier H., Nöthen M. M. Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS One, 2017, vol. 12, no. 2: e0171595. doi: 10.1371/journal.pone.0171595.

Alfimova M. V. , Golimbet V. E. , Korovaĭtseva G. I. , Lezheĭko T. V. , Abramova L. I. , Aksenova E. V., Bolgov M. I. Vliianie polimorfizma 5-HTTLPR gena perenoschika serotonina na raspoznavanie mimicheski vyrazhaemykh emotsii pri shizofrenii [The effect of the serotonin transporter 5-HTTLPR polymorphism on the recognition of facial emotions in schizophrenia]. Zh. Nevrol. i Psikhiatr. im. S. S. Korsakova, 2014, vol. 114, no. 1, issue 1, pp. 42–48. (In Russian)

Kolesnichenko E. V., Baryl’nik Iu. B., Golimbet V. E. Vliianie gena BDNF na fenotipicheskuiu ekspressiiu paranoidnoi shizofrenii [Influence of BDNF gene on phenotypic expression of paranoid schizophrenia]. Social and Clinical Psychiatry, 2015, vol. 2, pp. 45–49. (In Russian)

Schumacher J., Jamra R. A., Becker T., Ohlraun S., Klopp N., Binder E. B., Schulze T. G., Deschner M., Schmäl C., Höfels S., Zobel A., Illig T., Propping P., Holsboer F., Rietschel M., Nöthen M. M., Cichon S. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression.Biol. Psychiatry, 2005, vol. 58, pp. 307–314.

Voineskos A. N., Lerch J. P., Felsky D., Shaikh S., Rajji T. K., Miranda D., Lobaugh N. J., Mulsant B. H., Pollock B. G., Kennedy J. L. The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease.Arch. Gen. Psychiatry, 2011, vol. 68, pp. 198–206

Northoff G. Brain imaging in catatonia: current findings and a pathophysiologic model. CNS Spectr., 2000, vol. 5, pp. 34–46.

Rajmohan V., Mohandas E. Neurobiology of catatonia. Health Science, 2013, vol. 2, no. 3, pp. 1–7.

Zhilyaeva T. V., Sergeeva A. V., Blagonravova A. S., Akimova E. V., Kasimova L. N. Polimorfizm gena obmena folatov MTHFR677C>T i katatonicheskaia simptomatika shizofrenii [Folate metabolism genetic polymorphism MTHFR677C>T and catatonic symptoms of schizophrenia]. Neurological Bulletin. Journal named after V. M. Bekhterev, 2016, vol. 48, no. 2, pp. 12–16. (In Russian)

Kay S. R., Sevy S. Pyramidical model of schizophrenia. Schizophr. Bull., 1990, vol. 16, pp. 537–545.

Il’ina N. A., Zakharova N. V. Dlitel’nye remissii diskineticheskogo tipa pri pristupoobraznoi shizofrenii [Long-term dyskinetic remissions in shift-like schizophrenia]. Zh. Nevrol. i Psikhiatr. im. S. S. Korsakova,2010, vol. 110, no. 12, pp. 17–23. (In Russian)

Costain G., Bassett A. S. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era. Appl. Clin. Genet., 2012, vol. 5, pp. 1–18.

Sekar A., Bialas A. R., de Rivera H., Davis A., Hammond T. R., Kamitaki N., Tooley K., Presumey J., Baum M., Van Doren V., Genovese G., Rose S. A., Handsaker R. E., Daly M. J., Carroll M. C., Stevens B., McCarroll S. A. Schizophrenia risk from complex variation of complement component 4. Nature, 2016, vol. 530, pp. 177–183.

Traylor M., Farrall M., Holliday E. G., Sudlow C., Hopewell J. C., Cheng Y.-C., Fornage M., Ikram M. A., Malik R., Bevan S., Thorsteinsdottir U., Nalls M. A., Longstreth W., Wiggins K. L., Yadav S., Parati E. A., Destefano A. L., Worrall B. B., Kittner S. J., Khan M. S., Reiner A. P., Helgadottir A., Achterberg S., Fernandez-Cadenas I., Abboud S., Schmidt R., Walters M., Chen W. M., Ringelstein E. B., O’Donnell M., Ho W. K., Pera J., Lemmens R., Norrving B., Higgins P., Benn M., Sale M., Kuhlenbäumer G., Doney A. S., Vicente A. M., Delavaran H., Algra A., Davies G., Oliveira S. A., Palmer C. N., Deary I., Schmidt H., Pandolfo M., Montaner J., Carty C., de Bakker P. I., Kostulas K., Ferro J. M., van Zuydam N. R., Valdimarsson E., Nordestgaard B. G., Lindgren A., Thijs V., Slowik A., Saleheen D., Paré G., Berger K., Thorleifsson G., Hofman A., Mosley T. H., Mitchell B. D., Furie K., Clarke R., Levi C., Seshadri S., Gschwendtner A., Boncoraglio G. B., Sharma P., Bis J. C., Gretarsdottir S., Psaty B. M., Rothwell P. M., Rosand J., Meschia J. F., Stefansson K., Dichgans M., Markus H. S. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol., 2012, vol. 11, pp. 951–962.

Gretarsdottir S., Thorleifsson G., Manolescu A., Styrkarsdottir U., Helgadottir A., Gschwendtner A., Kostulas K., Kuhlenbäumer G., Bevan S., Jonsdottir T., Bjarnason H., Saemundsdottir J., Palsson S., Arnar D. O., Holm H., Thorgeirsson G., Valdimarsson E. M., Sveinbjörnsdottir S., Gieger C., Berger K., Wichmann H. E., Hillert J., Markus H., Gulcher J. R., Ringelstein E. B., Kong A., Dichgans M., Gudbjartsson D. F., Thorsteinsdottir U., Stefansson K. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann. Neurol., 2008, vol. 64, pp. 402–409.

Gudbjartsson D. F., Holm H., Gretarsdottir S., Thorleifsson G., Walters G. B., Thorgeirsson G., Gulcher J., Mathiesen E. B., Njølstad I., Nyrnes A., Wilsgaard T., Hald E. M., Hveem K., Stoltenberg C., Kucera G., Stubblefield T., Carter S., Roden D., Ng M. C., Baum L., So W. Y., Wong K. S., Chan J. C.,Gieger C., Wichmann H. E., Gschwendtner A., Dichgans M., Kuhlenbäumer G., Berger K., Ringelstein E. B., Bevan S., Markus H. S., Kostulas K., Hillert J., Sveinbjörnsdóttir S., Valdimarsson E. M., Løchen M. L., Ma R. C., Darbar D., Kong A., Arnar D. O., Thorsteinsdottir U., Stefansson K. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat. Genet., 2009, vol. 41, pp. 876–878.

Published

2018-03-27

How to Cite

Zakharova, N. V., Nizamutdinov, I. I., Musatova, V. V., Ilinsky, V. V., Morozova, A. Y., Bocharova, M. O., … Kostyuk, G. P. (2018). Future directions in genome-wide association studies of schizophrenia spectrum disorders. Vestnik of Saint Petersburg University. Medicine, 13(1), 72–82. https://doi.org/10.21638/spbu11.2018.107

Issue

Section

Neurology. Neurosurgery. Psychiatry