Fibroblast growth factor 21 and its influence on metabolic processes in the human body

Authors

  • Галина Александровна Прощай North-Western State Medical University named after I. I. Mechnikov, 41, Kirochnaia ul., St. Petersburg, 191015, Russian Federation
  • Наталья Владимировна Ворохобина North-Western State Medical University named after I. I. Mechnikov, 41, Kirochnaia ul., St. Petersburg, 191015, Russian Federation
  • Елена Юрьевна Загарских North-Western State Medical University named after I. I. Mechnikov, 41, Kirochnaia ul., St. Petersburg, 191015, Russian Federation
  • Сергей Александрович Парцерняк North-Western State Medical University named after I. I. Mechnikov, 41, Kirochnaia ul., St. Petersburg, 191015, Russian Federation
  • Александр Сергеевич Парцерняк S. M. Kirov Military Medical Academy, 6, ul. Academica Lebedeva, St. Petersburg, 194044, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu11.2018.104

Abstract

Fibroblast Growth Factor 21 (FGF21) regulates mainly glucose and lipid metabolism. It improves insulin sensitivity, increases high-density lipoprotein, decreases serum triglyceride, low-density lipoprotein, blood glucose level and body weight. However, high circulating FGF21 levels have been found in the case of the type 2 diabetes, chronic heart disease, non-alcoholic fatty liver disease, obesity and other. These findings may indicate the FGF21 resistance or compensatory response to the metabolic stress. Thus, serum FGF21 can be seen as a potential marker of these metabolic disorders. The purpose of this review has been to summarize the scientific date of influence FGF21 on the development of the diseases which associated with metabolic disorders.

Keywords:

Fibroblast growth factor 21,, 2nd Type Diabetes Mellitus, Cardiovascular disease, Insulin resistance, Obesity

Downloads

Download data is not yet available.
 

References


References

Nishimura T., Nakatake Y., Konishi M., Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochimica et Biophysica Acta, 2000, vol. 1492, no. 1, pp. 203–206.

Кharitonenkov A. FGFs and metabolism. Current Opinion in Pharmacology, 2009, vol. 9, no. 6, pp. 805–810.

Presta M., Dell’Era P., Mitola S., Moroni E., Ronca R., Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev., 2005, vol. 16, no. 2, pp. 159–178. doi:10.1016/j.cytogfr.2005.01.004.

Long Y. C., Kharitonenkov A. Hormone-like fibroblast growth factors and metabolic regulation.Biochimica et Biophysica Acta, 2011, vol. 1812, no. 7, pp. 791–795. doi:10.1016/j.bbadis.2011.04.002.

Fon Tacer K., Bookout A. L., Ding X., Kurosu H., John G. B., Wang L., Goetz R., Mohammadi M., Kuro-o M., Mangelsdorf D. J., Kliewer S. A. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse.Molecular Endocrinology, 2010, vol. 24, no. 10, pp. 2050–2064. doi: 10.1210/me.2010-0142.

Ogawa Y., Kurosu H., Yamamoto M., Nandi A., Rosenblatt K. P., Goetz R., Eliseenkova A. V., Mohammadi M., Kuro-o M. BetaKlotho is required for metabolic activity of fibroblast growth factor 21.Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 18, pp. 7432–7437. doi:10.1073/pnas.0701600104.

Suzuki M., Uehara Y., Motomura-Matsuzaka K., Oki J., Koyama Y., Kimura M., Asada M., Komi-Kuramochi A., Oka S., Imamura T. bKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c.Molecular Endocrinology, 2008, vol. 22, no. 4, pp. 1006–1014. doi:10.1210/me.2007-0313.

Li K., Li L., Yang M., Liu H., Boden G., Yang G. The effects of fibroblast growth factor-21 knockdown and over-expression on its signaling pathway and glucose-lipid metabolism in vitro.Molecular and Cellular Endocrinology, 2012, vol. 348, no. 1, pp. 21–26. doi:10.1016/j.mce. 2011.07.026.

Ge X., Chen C. ., Hui X, Wang Y., Lam K. S., Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. Journal of Biological Chemistry, 2011, vol. 286, no. 40, pp. 34533–34541. doi:10.1074/jbc.M111.248591.

Cuevas-Ramos D., Almeda-Valdés P., Meza-Arana C. E., Brito-Córdova G., Gómez-Pérez F. J., Mehta R., Oseguera-Moguel J., Aguilar-Salinas C. A. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One, 2012, vol. 7, no. 5, pp. e38022. doi: 10.1371/journal.pone.0038022.

Berglund E. D., Li C. Y., Bina H. A., Lynes S. E., Michael M. D., Shanafelt A. B., Kharitonenkov A., Wasserman D. H. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity.Endocrinology, 2009, vol. 150, no. 9, pp. 4084–4093. doi: 10.1210/en.2009-0221.

Mashili F. L., Austin R. L., Deshmukh A. S., Fritz T., Caidahl K., Bergdahl K., Zierath J. R., Chibalin A. V., Moller D. E., Kharitonenkov A., Krook A. Direct effects of FGF21 on glucose uptake in human skeletal muscle: Implications for type 2 diabetes and obesity.Diabetes/metabolism Research and Reviews, 2011, vol. 27, no. 3, pp. 286–297. doi: 10.1002/dmrr.1177.

Lin Z., Tian H., Lam K. S., Lin S., Hoo R. C., Konishi M., Itoh N., Wang Y., Bornstein S. R., Xu A., Li X. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice.Cell. Metab., 2013, vol. 17, no. 5, pp. 779–789. doi: 10.1016/j.cmet.2013.04.005.

Holland W. L., Adams A. C., Brozinick J. T., Bui H. H., Miyauchi Y., Kusminski C. M., Bauer S. M., Wade M., Singhal E., Cheng C. C., Volk K., Kuo M. S., Gordillo R., Kharitonenkov A., Scherer P. E. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell. Metab., 2013, vol. 17, no. 5, pp. 790–797. doi: 10.1016/j.cmet.2013.03.019.

Badman M. K., Pissios P., Kennedy A. R., Koukos G., Flier J. S., Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell. Metab., 2007, vol. 5, no. 6, pp. 426–437. doi: 10.1016/j.cmet.2007.05.002.

Chau M. D., Gao J., Yang Q., Wu Z., Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway. Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 28, pp. 12553–12558. doi: 10.1073/pnas.1006962107.

Arner P., Pettersson A., Mitchell P. J., Dunbar J. D., Kharitonenkov A., Ryden M. FGF21 attenuates lipolysis in human adipocytes — a possible link to improved insulin sensitivity.FEBS Letters, 2008, vol. 582, no. 12, pp. 1725–1730. doi: 10.1016/j.febslet.2008.04.038.

Uebanso T., Taketani Y., Yamamoto H., Amo K., Ominami H., Arai H., Takei Y., Masuda M., Tanimura A., Harada N., Yamanaka-Okumura H., Takeda E. Paradoxical regulation of human FGF21 by both fasting and feeding signals: Is FGF21 a nutritional adaptation factor?PloS One, 2011, vol. 6, no. 8, p. e22976. doi: 10.1371/journal.pone.0022976.

Mraz M., Bartlova M., Lacinova Z., Michalsky D., Kasalicky M., Haluzikova D., Matoulek M., Dostalova I., Humenanska V., Haluzik M. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clinical Endocrinology, 2009, vol. 71, no. 3, pp. 369–375. doi: 10.1111/j.1365-2265.2008.03502.x.

Mai K., Schwarz F., Bobbert T., Andres J., Assmann A., Pfeiffer A. F., Spranger J. Relation between fibroblast growth factor-21, adiposity, metabolism, and weight reduction.Metabolism. 2011, vol. 60, no. 2, pp. 306–311. doi: 10.1016/j.metabol.2010.02.016.

Woelnerhanssen B., Peterli R., Steinert R. E., Peters T., Borbély Y., Beglinger C. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy — a prospective randomized trial. Surg. Obes. Relat. Dis., 2011, vol. 7, no. 5, pp. 561–568. doi: 10.1016/j.soard.2011.01.044.

Cheng P. Zhang F., Yu L., Lin X., Xiufei L., Luqing H., Xiaokun L., Xuemian L., Xiaoqing Y., Yi T., Chi Z. Physiological and Pharmacological Roles of FGF21 in Cardiovascular Diseases.Journal of Diabetes Research, 2016, vol. 2016, pp. 1–8. doi: 10.1155/2016/1540267.

Lin Z., Wu Z., Yin X., Liu Y., Yan X., Lin S., Xiao J., Wang X., Feng W., Li X. Serum levels of FGF-21 Are Increased in Coronary Heart Disease Patients and Are Independently Associated with Adverse Lipid Profile. PLoS ONE, 2010, vol. 5, no. 12, p. e15534. doi:10.1371/journal.pone.0015534.

Jian W. X., Peng W. H., Jin J., Chen X. R., Fang W. J., Wang W. X., Qin L., Dong Y., Su Q. Association between serum fibroblast growth factor 21 and diabetic nephropathy. Metabolism: Clinical and Experimental Metabolism, 2012, vol. 61, no. 6, pp. 853–859. doi: 10.1016/j.metabol.2011.10.012.

An S. Y., Lee M. S., Yi S. A., Ha E. S., Han S. J., Kim H. J., Kim D. J., Lee K. W. Serum fibroblast growth factor 21 was elevated in subjects with type 2 diabetes mellitus and was associated with the presence of carotid artery plaques. Diabetes Research and Clinical Practice, 2012, vol. 96, no. 2, pp. 196–203. doi: 10.1016/j.diabres.2012.01.004.

Gorar S., Culha C., Uc Z. A., Dellal F. D., Serter R., Aral S., Aral Y. Serum fibroblast growth factor 21 levels in polycystic ovary syndrome. Gynecological Endocrinology: The Official Journal of the International Society of Gynecological Endocrinology, 2010, vol. 26, no. 11, pp. 819–826. doi: 10.3109/09513590.2010.487587.

Stein S., Stepan H., Kratzsch J., Verlohren M., Verlohren H. J., Drynda K., Lossner U., Bluher M., Stumvoll M., Fasshauer M. Serum fibroblast growth factor 21 levels in gestational diabetes mellitus in relation to insulin resistance and dyslipidemia.Metabolism: Clinical and Experimental, 2010, vol. 59, no. 1, pp. 33–37. doi: 10.1016/j.metabol.2009.07.003.

Chen C., Cheung B. M., Tso A. W., Wang Y., Law L. S., Ong K. L., Wat N. M., Xu A., Lam K. S. High plasma level of fibroblast growth factor 21 is an Independent predictor of type 2 diabetes: a 5.4-year population-based prospective study in Chinese subjects. Diabetes Care, 2011, vol. 34, no. 9, pp. 2113–2115. doi: 10.2337/dc11-0294.

Chavez A. O., Molina-Carrion M., Abdul-Ghani M. A., Folli F., Defronzo R. A., Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance.Diabetes Care, 2009, vol. 32, no. 8, pp. 1542–1546. doi: 10.2337/dc09-0684.

Yang M., Dong J., Liu H., Li L., Yang G. Effects of short-term continuous subcutaneous insulin infusion on fasting plasma fibroblast growth factor-21 levels in patients with newly diagnosed type 2 diabetes mellitus.PLoS ONE, 2011, vol. 6, no. 10, p. e26359. doi: 10.1371/journal.pone.0026359.

Mai K., Andres J., Biedasek K., Weicht J., Bobbert T., Sabath M., Meinus S., Reinecke F., Mohlig M., Weickert M. O., Clemenz M., Pfeiffer A. F., Kintscher U., Spuler S., Spranger J. Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes, 2009, vol. 58, no. 7, pp. 1532–1538. doi: 10.2337/db08-1775.

Mai K., Bobbert T., Groth C., Assmann A., Meinus S., Kraatz J., Andres J., Arafat A. M., Pfeiffer A. F., Möhlig M., Spranger J. Physiological modulation of circulating FGF21: relevance of free fatty acids and insulin.Am. J. Physiol. Endocrinol Metab., 2010, vol. 299, no. 1, pp. e126–130. doi: 10.1152/ajpendo.00020.2010.

Zibar K., Blaslov K., Bulum T., Ćuća J. K., Smirčić-Duvnjak L. Basal and postprandial change in serum fibroblast growth factor-21 concentration in type 1 diabetic mellitus and in healthy controls.Endocrine, 2015, vol. 48, no. 3, pp. 848–855. doi: 10.1007/s12020-014-0413-9.

Dostalova I., Haluzikova D., Haluzik M. Fibroblast growth factor 21: a novel metabolic regulator with potential therapeutic properties in obesity/type 2 diabetes mellitus. Physiological Research/Academia Scientiarum Bohemoslovaca, 2009, vol. 58, no. 1, pp. 1–7.

Reinehr T., Woelfle J., Wunsch R., Roth C. L. Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: A longitudinal analysis.The Journal of Clinical Endocrinology and Metabolism, 2012, vol. 97, no. 6, pp. 2143–2150. doi: 10.1210/jc.2012-1221.

Chow W. S., Xu A., Woo Y. C., Tso A. W., Cheung S. C., Fong C. H., Tse H. F., Chau M. T., Cheung B. M., Lam K. S. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arterioscler. Thromb. Vasc. Biol., 2013, vol. 33, no. 10, pp. 2454–2459. doi: 10.1161/ATVBAHA. 113.301599.

Yan H., Xia M., Chang X., Xu Q., Bian H., Zeng M., Rao S., Yao X., Tu Y., Jia W., Gao X. Circulating fibroblast growth factor 21 levels are closely associated with hepatic fat content: a cross-sectional study. PloS One, 2011, vol. 6, no. 9, p. e24895. doi: 10.1371/journal.pone.0024895.

Lin Z., Zhou Z., Liu Y., Gong Q., Yan X., Xiao J., Wang X., Lin S., Feng W., Li X. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese.PLoS One, 2011, vol. 6, no. 4, p. e18398. doi: 10.1371/journal.pone.0018398.

Han S. H., Choi S. H., Cho B. J., Lee Y., Lim S., Moon M. K., Lee H. K., Kang S. W., Han D. S., Kim Y. B., Jang H. C., Park K. S. Serum fibroblast growth factor-21 concentration is associated with residual renal function and insulin resistance in end-stage renal disease patients receiving long-term peritoneal dialysis. Metabolism: Clinical and Experimental, 2010, vol. 59, no. 11, pp. 1656–1662. doi: 10.1016/j.metabol.2010.03.018.

Ylikallio E., Suomalainen A. Mechanisms of mitochondrial diseases. Ann. Med., 2012, vol. 44, no. 1, pp. 41–59. doi: 10.3109/07853890.2011.598547.

Suomalainen A. Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. Expert Opin. Med. Diagn., 2013, vol. 7, no. 4, pp. 313–317. doi: 10.1517/17530059.2013.812070.

Published

2018-03-27

How to Cite

Прощай, Г. А., Ворохобина, Н. В., Загарских, Е. Ю., Парцерняк, С. А., & Парцерняк, А. С. (2018). Fibroblast growth factor 21 and its influence on metabolic processes in the human body. Vestnik of Saint Petersburg University. Medicine, 13(1), 38–45. https://doi.org/10.21638/11701/spbu11.2018.104

Issue

Section

Pathological physiology