Current knowledge of genetics of COVID-19

Authors

  • Aleksandr Golota City Hospital no. 40, 9, ul. Borisova, Sestroretsk, St Petersburg, 197706, Russian Federation ; St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Dmitry Vologzhanin City Hospital no. 40, 9, ul. Borisova, Sestroretsk, St Petersburg, 197706, Russian Federation ; St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Tatyana Kamilova City Hospital no. 40, 9, ul. Borisova, Sestroretsk, St Petersburg, 197706, Russian Federation
  • Stanislav Makarenko City Hospital no. 40, 9, ul. Borisova, Sestroretsk, St Petersburg, 197706, Russian Federation
  • Sergey Sсherbak City Hospital no. 40, 9, ul. Borisova, Sestroretsk, St Petersburg, 197706, Russian Federation ; St Petersburg State University, 7–9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2021.404

Abstract

The ongoing COVID-19 pandemic, caused by coronavirus SARS-CoV-2, is responsible for a reported 456,797,217 cases of COVID-19, and 6,043,094 deaths worldwide as of 12.03.2022. Following infection with SARS-CoV-2, COVID-19 clinical presentation ranges from asymptomatic or mild (~80 % of infections), to severe disease that typically requires hospitalization and assisted respiration. Innate immune responses to viral infection are also a critical determinant of disease outcome. Genetic risk factors for COVID-19 are in the early stages of study. A number of mutations and polymorphisms have been identified that affect the structure and stability of proteins — factors of susceptibility to SARS-COV-2 infection, a predisposition to the development of respiratory failure, and the need for intensive care. Most of the identified genetic factors are related to the function of the immune system. On the other hand, the genetic polymorphism of the virus itself affects the spread and severity of the course of COVID-19. The genome of the virus accumulates mutations and evolves towards increasing contagiousness, replicative ability, and evasion from the host’s immune system. Genetic determinants of infection are potential therapeutic targets. Studying them will provide information for the development of drugs and vaccines to combat the pandemic.

Keywords:

COVID-19, coronavirus, SARS-COV-2, genetic predisposition factors, mutation, polymorphism

Downloads

Download data is not yet available.
 

References


References

WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ (accessed:10.08.2021).

Ahmadian E., Khatibi S. M. H., Soofiyani S. R. COVID-19 and kidney injury: pathophysiology and molecular mechanisms. Rev. Med. Virol., 2021, vol. 31, no. 3, pp. e2176.

Sakurai A., Sasaki T., Kato S. Natural history of asymptomatic SARS-CoV-2 infection. N. Engl. J. Med.,2020, vol. 383, no. 3, pp. 885–886.

Clohisey S., Baillie J. K. Host susceptibility to severe influenza A virus infection. Critical Care,2019,vol. 23, no. 1, p. 303.

Zhang Q., Bastard P., Liu Z. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, vol. 370, no. 6515, pp. eabd4570.

Kaser A. Genetic risk of severe Covid-19. N. Engl. J. Med., 2020, vol. 383, no. 16, pp. 1590–1591.

Ellinghaus D., Degenhardt F., Bujanda L., Buti M., Albillos A., Invernizzi P., Fernández J., Prati D., Baselli G., Asselta R., Grimsrud M. M., Milani C., Aziz F., Kässens J., May S., Wendorff M., Wienbrandt L., Uellendahl-Werth F., Zheng T., Yi X., de Pablo R., Chercoles A. G., Palom A., Garcia-Fernandez A. E., Rodriguez-Frias F., Zanella A., Bandera A., Protti A., Aghemo A., Severe COVID-19 GWAS Group. Genomewide association study of severe COVID-19 with respiratory failure. N. Engl. J. Med., 2020,vol. 383, no. 16, pp. 1522–1534.

Pairo-Castineira E., Clohisey S., Klaric L. Genetic mechanisms of critical illness in Covid-19. Nature,2021, vol. 591, no. 7848, pp. 92–98.

Zhou S., Butler-Laporte G., Nakanishi T. A Neanderthal OAS1 isoform protects against COVID-19 susceptibility and severity: results from mendelian randomization and case-control studies. Nat. Med.,2021, vol. 27, no. 4, pp. 659–667.

Zeberg H., Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals.Nature,2020, vol. 587, no. 7835, pp. 610–612.

Zeberg H., Pääbo S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc. Natl. Acad. Sci USA, 2021, vol. 118, no. 9, pp. e2026309118.

Pan H., Peto R., Henao-Restrepo A. M. Repurposed antiviral drugs for Covid-19 — Interim WHO Solidarity Trial Results. N. Engl. J. Med., 2021, vol. 384, no. 6, pp. 497–511.

Varga Z., Flammer A. J., Steiger P. Endothelial cell infection and endotheliitis in COVID-19. Lancet,2020, vol. 395, no. 10234, pp. 1417–1418.

Zhang C., Shi L., Wang F. S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol.Hepatol., 2020, vol. 5, no. 5, pp. 428–430.

Zhou Z., Ren L., Zhang L. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell. Host. Microbe, 2020, vol. 27, no. 6, pp. 883–890.

Hamming I., Timens W., M. Bulthuis L. C. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. The first step in understanding SARS pathogenesis. J. Pathol., 2004, vol. 203, no. 2, pp. 631–637.

Jia H., Thelwell C., Dilger P. Endothelial cell functions impaired by interferon in vitro: Insights into the molecular mechanism of thrombotic microangiopathy associated with interferon therapy. Thromb. Res., 2018, no. 163, pp. 105–116.

Stebbing J., Sánchez Nievas G., Falcone M., Youhanna S., Richardson P., Ottaviani S., Shen J. X., SommerauerC., Tiseo G., Ghiadoni L., Virdis A., Monzani F., Rizos L. R., Forfori., Céspedes A. A., De Marco S., Carrozzi L., Lena F., Sánchez-Jurado P. M., Lacerenza L. G., Cesira N., Bernardo D. C., Perrella A., Niccoli L., Méndez L. S, Matarrese D., Goletti D., Tan Y. J., Monteil V., Dranitsaris G., Cantini F., Farcomeni A., Dutta S., Burley S. K., Zhang H., Pistello M., Li W., Romero M. M., Pretel F. A., Simón- Talero R. S., García-Molina R., Kutter C., Felce J. H., Nizami Z. F. 9, Miklosi A. G., Penninger J. M., Menichetti F., Mirazimi A., Abizanda P., Lauschke V. M. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci. Adv., 2021,vol. 7, no. 1, p. eabe4724.

Kuo C. L., Pilling L. C., Atkins J. L. APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. J. Gerontol. A. Biol. Sci. Med. Sci., 2020, vol. 75, no. 11, pp. 2231–2232.

Gemmati D., Bramanti B., Serino M. L. COVID-19, and individual genetic susceptibility/receptivity:role of ACE1/ACE2 genes, immunity, inflammation, and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males?Int. J. Mol. Sci., 2020, vol. 21, no. 10, pp. 3474.

Li Y., Zhang Z., Yang L., Lian X., Xie Y., Li S., Xin S., Cao P., Lu J. The MERS-CoV Receptor DPP4 as a Candidate Binding Target of the SARS-CoV-2 Spike. iScience, 2020, vol. 23, no. 8, p. 101400.

Lim S., Bae J. H., Kwon H. S., Nauck M. A. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat. Rev. Endocrinol., 2021, vol. 17, no. 1, pp. 11–30.

Lee J. W., Lee I. H., Sato T., Kong S. W., Iimura T. Genetic variation analyses indicate conserved SARS-CoV-2-host interaction and varied genetic adaptation in immune response factors in modern human evolution. Dev. Growth Differ., 2021, vol. 63, no. 3, pp. 219–227.

Martin-Sancho L., Lewinski M. K., Pache L., Stoneham C. A., Yin X., Pratt D., Churas C., Rosenthal S. B., Liu S., De Jesus P. D., O’Neill A. M., Gounder A. P., Nguyen C., Pu Y., Oom A. L., Miorin L., Rodriguez-Frandsen A., Urbanowski M., Shaw M. L., Chang M. W., Benner C., Frieman M. B., García-Sastre A., Ideker T., Hultquist J. F., Guatelli J., Chanda S. K. Functional landscape of SARS-CoV-2 cellular restriction. bioRxiv, 2020, Sep 30. https://doi.org/10.1101/2020.09.29.319566. Preprint

Lokugamage K. G., Hage A., de Vries M, Valero-Jimenez A. M., Schindewolf C., Dittmann M., Rajsbaum R., Menachery V. D. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J. Virol., 2020, vol. 94, no. 23, pp. e01410–e01420.

Long S. W., Olsen R. J., Christensen P. A. Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area. mBio., 2020, vol. 11, no. 6, pp. e02707-20.

Plante J. A., Liu Y., Liu J., Xia H., Johnson B. A., Lokugamage K. G., Zhang X., Muruato A. E.,Zou J., Fontes-Garfias C. R., Mirchandani D., Scharton D., Bilello J. P., Ku Z., An Z., Kalveram B., Freiberg A. N., Menachery V. D., Xie X., Plante K. S., Weaver S. C., Shi P. Y. Spike mutation D614G alters SARS-CoV-2 fitness and neutralization susceptibility. bioRxiv, 2020, Sep 2. https://doi. org/10.1101/2020.09.01.278689

Shannon A., Le N. T., Selisko B., Eydoux C., Alvarez K., Guillemot J. C., Decroly E., Peersen O., Ferron F., Canard B. Remdesivir and SARS-CoV-2: structural requirements at both nsp12 RdRp and nsp14 exonuclease active-sites. Antiviral Res., 2020, no. 178, pp. 104793.

Gordon C. J., Tchesnokov E. P., Woolner E. Remdesivir is a direct-acting antiviral that inhibits RNAdependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, vol. 295, no. 20, pp. 6785–6797.

Chan AP, Choi Y, Schork N. J. Conserved genomic terminals of SARS-CoV-2 as coevolving functional elements and potential therapeutic targets.mSphere, 2020, vol. 5, no. 6, pp. e00754-20.

Mishra A., Pandey A. K., Gupta P., Pradhan P., Dhamija1S., Gomes J., Kundu B., Vivekanandan P., Menon M. B. Mutation landscape of SARS-CoV-2 reveals five mutually exclusive clusters of leading and trailing single nucleotide substitutions. bioRxiv, 2020. https://doi.org/10.1101/2020.05.07.082768.Preprint

Meini S., Zanichelli A., Sbrojavacca R., Iuri F., Roberts A. T., Suffritti C., Tascini C. Understanding the pathophysiology of COVID-19: could the contact system Be the key? Front. Immunol., 2020, no. 11, p. 2014.

Girardi E., López P., Pfeffer S. On the importance of host microRNAs during viral infection. Front. Genet., 2018, no. 9, p. 439.

Khan M. A. K., Sany M. R. U., Islam M. S., Islam A. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 worldwide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front. Genet.,2020, no. 11, p. 765.

Bavagnoli L., Campanini G., Forte M., Ceccotti G., Percivalle E., Bione S., Lisa A., Baldanti F., Maga G. Identification of a novel antiviral micro-RNA targeting the NS1 protein of the H1N1 pandemic human influenza virus and a corresponding viral escape mutation. Antiviral. Res., 2019, no. 171, p. 104593.

Herrera-Rivero M., Zhang R., Heilmann-Heimbach S. Circulating microRNAs are associated with pulmonary hypertension and development of chronic lung disease in congenital diaphragmatic hernia.Sci. Rep., 2018, vol. 8, no. 1, pp. 10735.

Qiu X., Dou Y. miR-1307 promotes the proliferation of prostate cancer by targeting FOXO3A. Biomed Pharmacother., 2017, no. 88, pp. 430–435.

Balmeh N., Mahmoudi S., Mohammadi N., Karabedianhajiabadi A. Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Inform. Med. Unlocked., 2020,no. 20, p. 100407.

Ortuso F., Mercatelli D., Guzzi P. H., Giorgi F. Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J. Biomol. Struct. Dyn., 2021, pp. 1–11. https://doi.org/10.1080/07391102.2021.1886175. Preprint

Kemp S. A., Collier D. A., Datir R. P. et al. SARS-CoV-2 evolution during treatment of chronic infection.Nature, 2021, vol. 592, no. 7853, pp. 277–282.

Young B. E., Fong S. W., Chan Y. H. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet, 2020, vol. 396, no. 10251, pp. 603–611.

To K. K., Hung I. F., Ip J. D., Ip J. D., Chu A. W., Chan W. M., Tam A. R. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole-genome sequencing. Clin. Infect. Dis.,<;/em> 2021, vol. 73, no. 9, pp. e2946–e2951.

Tillett R. L., Sevinsky J. R., Hartley P. D. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect. Dis., 2021, vol. 21, no. 1, pp. 52–58.

Dos Santos L. A., de Góis F. P. G., Fantini S. A. M. Recurrent COVID-19 including evidence of reinfection and enhanced severity in thirty Brazilian healthcare workers. J. Infect., 2021, vol. 82, no. 3,pp. 399–406.

McCarthy K. R., Rennick L. J., Nambulli S. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science, 2021, vol. 371, no. 6534, pp. 1139–1142.

Downloads

Published

2022-02-28

How to Cite

Golota , A. ., Vologzhanin, D. ., Kamilova, T., Makarenko, S., & Sсherbak S. . (2022). Current knowledge of genetics of COVID-19. Vestnik of Saint Petersburg University. Medicine, 16(4), 255–272. https://doi.org/10.21638/spbu11.2021.404

Issue

Section

Infectious diseases