3D-bioprinting in reconstructive surgery: Opportunities and prospects

Authors

  • Elizaveta Subbotina Russian University of Medicine, 4, ul. Dolgorukovskaya, Moscow, 127006, Russian Federation
  • Adam Cherkiev Kuban State Medical University, 4, ul. Mitrofana Sedina, Moscow, 350063, Russian Federation
  • Viktor Lendych Kuban State Medical University, 4, ul. Mitrofana Sedina, Moscow, 350063, Russian Federation https://orcid.org/0009-0005-7019-7202
  • Ekaterina Chizhova I. N. Uliyanov Chuvash State University, 15, Moskovskiy pr., Cheboksary, 428000, Russian Federation
  • Yuliana Makarova I. N. Uliyanov Chuvash State University, 15, Moskovskiy pr., Cheboksary, 428000, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2024.305

Abstract

3D bioprinting is one of the advanced technologies that is actively transforming approaches to reconstructive plastic surgery, offering new opportunities for the creation of personalized, biocompatible, and functional tissues and organs. This field allows the fabrication of complex tissue structures, significantly improving the quality of recovery after trauma and surgical interventions. This review covers the key principles and technologies of 3D bioprinting, its
application in reconstructive surgery, as well as the prospects for further development of this method. Special attention is given to the materials used in creating 3D structures, including bioinks, synthetic and natural polymers, as well as extracellular matrices that enable the
formation of tissues similar to natural ones. Layered tissue construction technologies, such as inkjet, laser printing, and extrusion, are used to create individualized anatomical models that help surgeons carefully plan surgeries. Despite significant achievements, challenges remain, such as the development of new biomaterials, improving model accuracy, and reducing equipment costs, which limit the widespread adoption of 3D bioprinting in clinical practice. Nevertheless, its potential to significantly improve surgical outcomes and enhance patients’ quality of life is undeniable.

Keywords:

3D bioprinting, reconstructive plastic surgery, biological matrices, cell materials, biocompatible polymers, tissue engineering, tissue reconstruction

Downloads

Download data is not yet available.
 

References


References

Wang Z., Wang L., Li T., Liu S., Guo B., Huang W., Wu Y. 3D bioprinting in cardiac tissue engineering.Theranostics, 2021, vol. 11, no. 16, pp. 7948–7969.

Matai I., Kaur G., Seyedsalehi A., McClinton A., Laurencin C. T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomateri-als, 2020, vol. 226, p. 119536.

Ostrovidov S., Salehi S., Costantini M., Suthiwanich K., Ebrahimi M., Sadeghian R. B., Fujie T., Shi X., Cannata S., Gargioli C., Tamayol A., Dokmeci M. R., Orive G., Swieszkowski W., Khademhosseini A. 3D bioprinting in skeletal muscle tissue engi-neering. Small, 2019, vol. 15, no. 24, e1805530.

Dey M., Ozbolat I. T. 3D bioprinting of cells, tissues and organs. Sci. Rep., 2020, vol. 10, no. 1, p. 14023.

Gungor-Ozkerim P. S., Inci I., Zhang Y. S., Khademhosseini A., Dokmeci M.R. Bioinks for 3D bioprinting: an overview. Biomater Sci., 2018, vol. 6, no. 5, pp. 915–946.

Zhang J., Wehrle E., Rubert M., Müller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int. J. Mol. Sci., 2021, vol. 22, no. 8, p. 3971.

Shukla P., Yeleswarapu S., Heinrich M. A., Prakash J., Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrica-tion, 2022, vol. 14, no. 3.

Murphy S. V., De Coppi P., Atala A. Opportunities and challenges of trans-lational 3D bioprinting.Nat. Biomed. Eng., 2020, vol. 4, no. 4, pp. 370–380.

Yarikov A. V., Gorbatov R. O., Denisov A. A., Smirnov I. I., Fraerman A. P., Sosnin A. G., Perlmutter O. A., Kalinkin A. A. Application of additive 3D printing technolo-gies in neurosurgery, vertebrology, traumatology and orthopedics. Clinical prac-tice, 2021, vol. 12, no. 1, pp. 90–104. (In Russian)

Chobulov S. A., Kravchuk A. D., Potapov A. A., Likhterman L. B., Maryahin A. D., Sinbukhova E. V. Modern aspects of reconstructive surgery of skull defects. Burdenko’s Journal of Neurosurgery, 2019, vol. 83, no. 2, pp. 115–124. (In Rus-sian)

Baindurashvili A. G., Vissarionov S. V., Poznovich M. S., Ovechkina A. V., Zaletina A. V. Application of three-dimensional printing in spine surgery and other bone pa-thologies. Sovremennye problemy nauki i obrazovaniia, 2019, no. 6. (In Rus-sian)

Zennifer A., Manivannan S., Sethuraman S., Kumbar S. G., Sundaramurthi D. 3D bioprinting and photocrosslinking: emerging strategies & future per-spectives. Biomater. Adv., 2022, vol. 134, p. 112576.

Shavandi A., Hosseini S., Okoro O. V., Nie L., Eghbali F., Melchels F. 3D bioprinting of lignocellulosic biomaterials. Adv. Healthc. Mater., 2020, vol. 9, no. 24, e2001472.

Zheng X., Huang J., Lin J., Yang D., Xu T., Chen D., Zan X., Wu A. 3D bi-oprinting in orthopedics translational research. J. Biomater. Sci. Polym. Ed., 2019, vol. 30, no. 13, pp. 1172–1187.

Hong N., Yang G. H., Lee J., Kim G. 3D bioprinting and its in vivo applica-tions. J. Biomed. Mater. Res.B. Appl. Biomater., 2018, vol. 106, no. 1, pp. 444–459.

Lam E. H. Y., Yu F., Zhu S., Wang Z. 3D bioprinting for next-generation per-sonalized medicine. Int. J. Mol. Sci., 2023, vol. 24, no. 7, p. 6357.

Gupta S., Bit A. 3D bioprinting in tissue engineering and regenerative med-icine. Cell Tissue Bank, 2022, vol. 23, no. 2, pp. 199–212.

Decante G., Costa J. B., Silva-Correia J., Collins M. N., Reis R. L., Oliveira J. M. Engineering bioinks for 3D bioprinting. Biofabrication, 2021, vol. 13, no. 3, p. 032001.

Yang P., Ju Y., Hu Y., Xie X., Fang B., Lei L. Emerging 3D bioprinting appli-cations in plastic surgery. Biomater. Res., 2023, vol. 27, no. 1, p. 1.

Shi Y., Xing T. L., Zhang H. B., Yin R. X., Yang S. M., Wei J., Zhang W. J. Tyro-sinase-doped bioink for 3D bioprinting of living skin constructs. Biomed. Mater., 2018, vol. 13, no. 3, p. 035008.

Lin F. S., Lee J. J., Lee A. K., Ho C. C., Liu Y. T., Shie M. Y. Calcium silicate-activated gelatin methacrylate hydrogel for accelerating human dermal fibroblast prolifera-tion and differentiation. Polymers (Basel),2020, vol. 13, no. 1, pp. 70.

Jang M. J., Bae S. K., Jung Y. S., Kim J. C., Kim J. S., Park S. K., Suh J. S., Yi S. J., Ahn S. H., Lim J. O. Enhanced wound healing using a 3D printed VEGF-mimicking pep-tide incorporated hydrogel patch in a pig model. Biomed. Mater., 2021, vol. 16, no. 4.

Intini C., Elviri L., Cabral J., Mros S., Bergonzi C., Bianchera A., Flammini L., Govoni P., Barocelli E.,Bettini R., McConnell M. 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in ex-perimental diabetes in rats. Carbohydr. Polym.,2018, vol. 199, pp. 593–602.

Sandri G., Rossi S., Bonferoni M. C., Miele D., Faccendini A., Del Favero E., Di Cola E., Icaro Cornaglia A., Boselli C., Luxbacher T., Malavasi L., Cantu’ L., Ferrari F. Chitosan/glycosaminoglycan scaffolds for skin reparation. Carbohydr. Polym., 2019, vol. 220, pp. 219–227.

Roshangar L., Rad J. S., Kheirjou R., Khosroshahi A. F. Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing. J. Tissue Eng. Regen. Med., 2021, vol. 15, no. 6,pp. 546–555.

Li W., Sheng K., Ran Y., Zhang J., Li B., Zhu Y., Chen J., He Q., Chen X., Wang J., Jiang T., Yu X., Ye Z. Transformation of acellular dermis matrix with dicalcium phosphate into 3D porous scaffold for bone regeneration. J. Biomater. Sci. Polym. Ed., 2021, vol. 32, no. 16, pp. 2071–2087.

Zhou G., Jiang H., Yin Z., Liu Y., Zhang Q., Zhang C., Pan B., Zhou J., Zhou X., Sun H., Li D., He A., Zhang Z., Zhang W., Liu W., Cao Y. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruc-tion. EBioMedicine, 2018, vol. 28, pp. 287–302.

Jia L., Hua Y., Zeng J., Liu W., Wang D., Zhou G., Liu X., Jiang H. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous pho-tocrosslinkable acellular cartilage matrix. Bioact. Mater., 2022, vol. 16, pp. 66–81.

Brennan J. R., Cornett A., Chang B., Crotts S. J., Nourmohammadi Z., Lombaert I., Hollister S. J.,Zopf D. A. Preclinical assessment of clinically streamlined, 3D-printed, biocompatible single- and two-stage tissue scaffolds for ear reconstruction. J. Biomed. Mater. Res. B. Appl. Biomater., 2021, vol. 109,no. 3, pp. 394–400.

Dong X., Askinas C., Kim J., Sherman J. E., Bonassar L. J., Spector J. A. Efficient engineering of human auricular cartilage through mesenchymal stem cell chaper-oning. J. Tissue Eng. Regen. Med., 2022,vol. 16, no. 9, pp. 825–835.

Posniak S., Chung J. H. Y., Liu X., Mukherjee P., Gambhir S., Khansari A., Wallace G. G. Bioprinting of chondrocyte stem cell co-cultures for auricular cartilage re-generation. ACS Omega, 2022, vol. 7, no. 7, pp. 5908–5920.

Xie X., Wu S., Mou S., Guo N., Wang Z., Sun J. Microtissue-based bioink as a chondrocyte microshelter for DLP bioprinting. Adv. Healthc. Mater., 2022, vol. 11, no. 22, e2201877.

Suszynski T. M., Serra J. M., Weissler J. M., Amirlak B. Three-dimensional printing in rhinoplasty. Plast. Reconstr. Surg.,2018, vol. 141, no. 6, pp. 1383–1385.

Lan X., Liang Y., Erkut E. J. N., Kunze M., Mulet-Sierra A., Gong T., Osswald M., Ansari K., Seikaly H.,Boluk Y., Adesida A. B. Bioprinting of human nasoseptal chondro-cytes-laden collagen hydrogel for cartilage tissue engineering. FASEB J., 2021, vol. 35, no. 3, e21191.

Choi Y. J., Cho D. W., Lee H. Development of silk fibroin scaffolds by using indirect 3D-bioprinting technology. Micromachines (Basel), 2021, vol. 13, no. 1, p. 43.

Klosterman T., Romo T. III. Three-dimensional printed facial models in rhi-noplasty. Facial Plast. Surg.,2018, vol. 34, no. 2, pp. 201–204.

De Greve G., Malka R., Barnett E., Robotti E., Haug M., Hamilton G., Lekakis G., Hellings P. W. Threedimensional technology in rhinoplasty. Facial Plast. Surg., 2022, vol. 38, no. 5, pp. 483–487.

Ruiz-Cantu L., Gleadall A., Faris C., Segal J., Shakesheff K., Yang J. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Mater. Sci. Eng. C. Mater. Biol. Appl., 2020, vol. 109,pp. 110578.

Lee S. S., Wu Y. C., Huang S. H., Chen Y. C., Srinivasan P., Hsieh D. J., Yeh Y. C., Lai Y. P., Lin Y. N. A novel 3D histotypic cartilage construct engineered by supercritical carbon dioxide decellularized porcine nasal cartilage graft and chondrocytes exhibited chondrogenic capability in vitro. Int. J. Med. Sci., 2021, vol. 18, no. 10, pp. 2217–2227.

Hasani-Sadrabadi M. M., Sarrion P., Pouraghaei S., Chau Y., Ansari S., Li S., Aghaloo T., Moshaverinia A. An engineered cell-laden adhesive hydrogel promotes cra-niofacial bone tissue regeneration in rats. Sci. Transl. Med., 2020, vol. 12, no. 534, eaay6853.

Todorova D., Simoncini S., Lacroix R., Sabatier F., Dignat-George F. Extra-cellular vesicles in angiogenesis. Circ. Res., 2017, vol. 120, no. 10, pp. 1658–1673.

Tong J., Mou S., Xiong L., Wang Z., Wang R., Weigand A., Yuan Q., Horch R. E., Sun J., Yang J. Adipose-derived mesenchymal stem cells formed acinar-like structure when stimulated with breast epithelial cells in three-dimensional culture. PLoS One, 2018, vol. 13, no. 10, e0204077.

Säljö K., Apelgren P., Stridh Orrhult L., Li S., Amoroso M., Gatenholm P., Kölby L. Long-term in vivo survival of 3D-bioprinted human lipoaspirate-derived adipose tissue: proteomic signature and cellular content. Adipocyte, 2022, vol. 11, no. 1, pp. 34–46.

Cox B. L., Ludwig K. D., Adamson E. B., Eliceiri K. W., Fain S. B. An open source, 3D printed preclinical MRI phantom for repeated measures of contrast agents and reference standards. Biomed. Phys. Eng. Express, 2018, vol. 4, no. 2, p. 027005.

Published

2025-01-22

How to Cite

Subbotina, E., Cherkiev , A., Lendych, V., Chizhova, E., & Makarova , Y. (2025). 3D-bioprinting in reconstructive surgery: Opportunities and prospects. Vestnik of Saint Petersburg University. Medicine, 19(3), 249–264. https://doi.org/10.21638/spbu11.2024.305

Issue

Section

Surgery