Вестник СПбГУ. Медицина. 2024. Т. 19. Вып. 3 277 Antibiotic resistance and new antimicrobial strategies: Exploring the problem of antibiotic resistance and the development of new drugs

Authors

  • Denis Burmistrov RUDN University, 6, ul. Miklukho-Maklaya, Moscow, 117198, Russian Federation
  • Alena Grechman outh-Ural State Medical University, 64, ul. Vorovskogo, Chelyabinsk, 454092, Russian Federation https://orcid.org/0009-0001-8180-0266
  • Ruslan Chernetsov Pavlov First St. Petersburg State Medical University, 6–8, ul. L’va Tolstogo, St. Petersburg, 197022, Russian Federation https://orcid.org/0009-0006-7257-3440
  • Veronika Iuziuk North-Western State Medical University named after I. I. Mechnikov, 41, ul. Kirochnaya, St. Petersburg, 191015, Russian Federation https://orcid.org/0009-0008-6319-6801
  • Aliya Bekmurzaeva Surgut State University, 1, pr. Lenina, Surgut, 628412, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2024.306

Abstract

Antibiotic resistance represents a serious global threat to the effectiveness of antibacterial therapy and public health as a whole, requiring immediate attention from researchers, healthcare professionals, pharmaceutical companies, and governmental organizations. This review
provides a detailed analysis of the primary mechanisms of antibiotic resistance, including ef-flux pumps, enzymatic inactivation of antibiotics, changes in cellular targets, and biofilms, which play a key role in protecting bacteria from external influences and contribute to their survival. Alternative strategies for developing new antimicrobial agents aimed at overcoming these mechanisms and preventing further spread of resistance are also discussed. Special emphasis is placed on innovative approaches such as phage therapy, the use of antimicrobial peptides, nanoantibiotics, immune therapy methods, and CRISPR-Cas technologies, which offer new prospects for overcoming resistance. The review examines new drug candidates that
require further study of their effectiveness, interactions with bacteria, and the use of biomaterials and nanoparticles for delivery. Possible ways to improve the efficiency of clinical trials of new drugs are analyzed. The importance of attracting private and public funding to support research is emphasized.

Keywords:

antibiotic resistance, new antimicrobial strategies, antibiotics, resistance mechanisms, phage therapy, antimicrobial peptides

Downloads

Download data is not yet available.
 

References


References

Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 2022, vol. 399, no. 10325, pp. 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Klein E. Y., Van Boeckel T. P., Martinez E. M., Pant S., Gandra S., Levin S. A., Goossens H., Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 15, pp. E3463–E3470. https://doi.org/10.1073/pnas.1717295115

Du D., Wang-Kan X., Neuberger A., van Veen H. W., Pos K. M., Piddock L. J. V., Luisi B. F. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol., 2018, vol. 16, no. 9, pp. 523–539. https://doi.org/10.1038/s41579-018-0048-6

Imai Y., Meyer K. J., Iinishi A., Favre-Godal Q., Green R., Manuse S., Caboni M., Mori M., Niles S., Ghiglieri M., Honrao C., Ma X., Guo J. J., Makriyannis A., Linares-Otoya L., Böhringer N., Wuisan Z. G., Kaur H., Wu R., Mateus A., Typas A., Savitski M. M., Espinoza J. L., O’Rourke A., Nelson K. E.,Hiller S., Noinaj N., Schäberle T. F., D’Onofrio A., Lewis K. A new antibiotic selectively kills Gramnegative pathogens. Nature, 2019, vol. 576, no. 7787, pp. 459–464. https://doi.org/10.1038/s41586-019-1791-1

Halawa E. M., Fadel M., Al-Rabia M. W., Behairy A., Nouh N. A., Abdo M., Olga R., Fericean L., Atwa A. M., El-Nablaway M., Abdeen A. Antibiotic action and resistance: Updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front. Pharmacol., 2024, vol. 14, p. 1305294. https://doi.org/10.3389/fphar.2023.1305294

Singh S., Singh S. K., Chowdhury I., Singh R. Understanding the Mechanism of Bacterial Bio- films Resistance to Antimicrobial Agents. Open Microbiol. J., 2017, vol. 11, pp. 53–62. https://doi.org/10.2174/1874285801711010053

Fernández-Billón M., Llambías-Cabot A. E., Jordana-Lluch E., Oliver A., Macià M. D. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm, 2023, vol. 5, p. 100129. https://doi.org/10.1016/j.bioflm.2023.100129

Sodhi K. K., Singh C. K., Kumar M., Singh D. K. Whole-genome sequencing of Alcaligenes sp. strain MMA: Insight into the antibiotic and heavy metal resistant genes. Front. Pharmacol., 2023, vol. 14,pp. 1144561–1144611. https://doi.org/10.3389/fphar.2023.1144561

Hirsch J., Klostermeier D. What makes a type IIA topoisomerase a gyrase or a Topo IV? Nucleic Acids Res., 2021, vol. 49, no. 11, pp. 6027–6042. https://doi.org/10.1093/nar/gkab270

Bodoev I. N., Smirnov G. B., Shitikov E. A., Ilina E. N. Formation of resistance to quinolones in Escherichia coli strains with defects in replication, recombination, and repair genes. Problemy meditsinskoi mikologii, 2020, vol. 22, no. 3, pp. 52–52. (In Russian)

Peschel A., Vuong C., Otto M., Götz F. The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob. Agents Chemother., 2000, vol. 44, no. 10, pp. 2845–2847. https://doi.org/10.1128/AAC.44.10.2845-2847.2000

Patel Y., Soni V., Rhee K. Y., Helmann J. D. Mutations in rpoB That Confer Rifampicin Resistance Can Alter Levels of Peptidoglycan Precursors and Affect β-Lactam Susceptibility. mBio, 2023, vol. 14, no. 2,e0316822. https://doi.org/10.1128/mbio.03168-22

Hasan C. M., Dutta D., Nguyen A. N. T. Revisiting Antibiotic Resistance: Mechanistic Foundations to Evolutionary Outlook. Antibiotics (Basel), 2021, vol. 11, no. 1, p. 40. https://doi.org/10.3390/antibiot-ics11010040

Chavada J., Muneshwar K. N., Ghulaxe Y., Wani M., Sarda P. P., Huse S. Antibiotic Resistance: Challenges and Strategies in Combating Infections. Cureus, 2023, vol. 15, no. 9, e46013. https://doi.org/10.7759/cureus.46013

Varela M. F., Stephen J., Lekshmi M., Ojha M., Wenzel N., Sanford L. M., Hernandez A. J., Parvathi A., Kumar S. H. Bacterial Resistance to Antimicrobial Agents. Antibiotics (Basel), 2021, vol. 10, no. 5, p. 593. https://doi.org/10.3390/antibiotics10050593

Paul S. M., Mytelka D. S., Dunwiddie C. T., Persinger C. C., Munos B. H., Lindborg S. R., Schacht A. L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, vol. 9, no. 3, pp. 203–214. https://doi.org/10.1038/nrd3078

Oselusi S. O., Dube P., Odugbemi A. I., Akinyede K. A., Ilori T. L., Egieyeh E., Sibuyi N. R., Meyer M.,Madiehe A. M., Wyckoff G. J., Egieyeh S. A. The role and potential of computer-aided drug discovery strategies in the discovery of novel antimicrobials. Comput. Biol. Med., 2024, vol. 169, p. 107927. https://doi.org/10.1016/j.compbiomed.2024.107927

Aminov R. I. A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol., 2010, vol. 1, p. 134. https://doi.org/10.3389/fmicb.2010.00134

Stokes J. M., Yang K., Swanson K., Jin W., Cubillos-Ruiz A., Donghia N. M., MacNair C. R., French S.,Carfrae L. A., Bloom-Ackermann Z., Tran V. M., Chiappino-Pepe A., Badran A. H., Andrews I. W.,Chory E. J., Church G. M., Brown E. D., Jaakkola T. S., Barzilay R., Collins J. J. A Deep Learning Approach to Antibiotic Discovery. Cell, 2020, vol. 180, no. 4, pp. 688–702.e13. https://doi.org/10.1016/j.cell.2020.01.021

Miller R. D., Iinishi A., Modaresi S. M., Yoo B.-K., Curtis T. D., Lariviere P. J., Liang L., Son S., Nicolau S., Bargabos R., Morrissette M., Gates M. F., Pitt N., Jakob R. P., Rath P., Maier T., Malyutin A. G., Kaiser J. T., Niles S., Karavas B., Ghiglieri M., Bowman S. E. J., Rees D. C., Hiller S., Lewis K. Computational identification of a systemic antibiotic for gram-negative bacteria. Nat. Microbiol., 2022, vol. 7, no. 10, pp. 1661–1672. https://doi.org/10.1038/s41564-022-01227-4

2020 Antibacterial agents in clinical and preclinical development: An overview and analysis. Geneva, World Health Organization, 2021, 59 p.

Felden B., Cattoir V. Bacterial Adaptation to Antibiotics through Regulatory RNAs. Antimicrob. Agents Chemother., 2018, vol. 62, no. 5, e02503-17. https://doi.org/10.1128/AAC.02503-17

Lewis K. The Science of Antibiotic Discovery. Cell, 2020, vol. 181, no. 1, pp. 29–45. https://doi.org/10.1016/j.cell.2020.02.056

McDevitt D., Rosenberg M. Exploiting genomics to discover new antibiotics.Trends Microbiol., 2001, vol. 9, no. 12, pp. 611–617. https://doi.org/10.1016/s0966-842x(01)02235-1

Mahey N., Tambat R., Kalia R., Ingavale R., Kodesia A., Chandal N., Kapoor S., Verma D. K., Thakur K. G., Jachak S., Nandanwar H. Pyrrole-based inhibitors of RND-type efflux pumps reverse antibiotic resistance and display anti-virulence potential. PLoS Pathog., 2024, vol. 20, no. 4, e1012121. https://doi.org/10.1371/journal.ppat.1012121

Pugh B. A., Rao A. B., Angeles-Solano M. Design and evaluation of poly-nitrogenous adjuvants capable of potentiating antibiotics in Gram-negative bacteria. RSC Med. Chem., 2022, vol. 13, no. 9,pp. 1058–1063.

Mu S., Zhu Y., Wang Y., Qu S., Huang Y., Zheng L., Duan S., Yu B., Qin M., Xu F. J. Cationic Polysaccharide Conjugates as Antibiotic Adjuvants Resensitize Multidrug-Resistant Bacteria and Prevent Resistance. Adv. Mater., 2022, vol. 34, no. 41, e2204065. https://doi.org/10.1002/adma.202204065

Leptihn S., Loh B. Complexity, challenges and costs of implementing phage therapy. Future Microbiol.,2022, vol. 17, pp. 643–646. https://doi.org/10.2217/fmb-2022-0054

Dedrick R. M., Smith B. E., Cristinziano M., Freeman K. G., Jacobs-Sera D., Belessis Y., Brown A. W.,Cohen K. A., Davidson R. M., van Duin D., Gainey A., Garcia C. B., George C. R. R., Haidar G., Ip W.,Iredell J., Khatami A., Little J. S., Malmivaara K., McMullan B. J., Michalik D. E., Moscatelli A., Nick J. A.,Ortiz M. G. T., Polenakovik H. M., Robinson P. D., Skurnik M., Solomon D. A., Soothill J., Spencer H.,Wark P., Worth A., Schooley R. T., Benson C. A., Hatfull G. F. Phage Therapy of Mycobacterium Infections: Compassionate Use of Phages in 20 Patients with Drug-Resistant Mycobacterial Disease. Clin.Infect. Dis., 2023, vol. 76, no. 1, pp. 103–112. https://doi.org/10.1093/cid/ciac453

Zalewska-Piątek B. Phage Therapy-Challenges, Opportunities and Future Prospects. Pharmaceuticals(Basel), 2023, vol. 16, no. 12, p. 1638. https://doi.org/10.3390/ph16121638

Vakarina A. A., Kataeva L. V., Stepanova T. F. Effect of bacteriophages on the sensitivity of conditionally pathogenic bacteria to antibacterial drugs. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii,2019, vol. 96, no. 2, pp. 3–7. https://doi.org/10.36233/0372-9311-2019-2-3-7 (In Russian)

McCallin S., Sacher J. C., Zheng J., Chan B. K. Current State of Compassionate Phage Therapy. Viruses,2019, vol. 11, no. 4, p. 343. https://doi.org/10.3390/v11040343

The unregulated potential of phages. The Lancet Microbe, 2023, vol. 4, no. 3, e126.

Ndugire W., Raviranga N. G. H., Lao J., Ramström O., Yan M. Gold Nanoclusters as Nanoantibiotic Auranofin Analogues.Adv. Healthc. Mater., 2022, vol. 11, no. 9, e2101032. https://doi.org/10.1002/adhm.202101032

Khalid A., Ahmad P., Alharthi A. I., Muhammad S., Khandaker M. U., Faruque M. R. I., Din I. U., Alotaibi M. A., Khan A. Synergistic effects of Cu-doped ZnO nanoantibiotic against Gram-positive bacterial strains. PLoS One, 2021, vol. 16, no. 5, e0251082. https://doi.org/10.1371/journal.pone.0251082

Singh C. K., Kaur Sodhi K. The emerging significance of nanomedicine-based approaches to fighting COVID-19 variants of concern: a perspective on the nanotechnology’s role in COVID-19 diagnosis and treatment. Front. Nanotechnol., 2023, vol. 4, pp. 1–13. https://doi.org/10.3389/fnano.2022.1084033

Zelenev V. V., Laskina T. A. Study of the antibacterial activity of drugs modified using nanotechnology and the ability of microorganisms to adapt to them. Aktual’nye Problemy Meditsiny i Biologii,2020,vol. 1, pp. 25–34. (In Russian)

De Vor L., Van Dijk B., Van Kessel K., Kavanaugh J. S., De Haas C., Aerts P. C., Viveen M. C., Boel E. C.,Fluit A. C., Kwiecinski J. M., Krijger G. C., Ramakers R. M., Beekman F. J., Dadachova E., Lam M. G., Vogely H. C., Van der Wal B. C., Van Strijp J. A., Horswill A. R., Weinans H., Rooijakkers S. H. Human monoclonal antibodies against Staphylococcus aureus surface antigens recognize in vitro and in vivo biofilm. Elife, 2022, vol. 11, e67301. https://doi.org/10.7554/eLife.67301

Nielsen T. B., Yan J., Slarve M., Lu P., Li R., Ruiz J., Lee B., Burk E., Talyansky Y., Oelschlaeger P.,Hurth K., Win W., Luna B. M., Bonomo R. A., Spellberg B. Monoclonal Antibody Therapy against Acinetobacter baumannii. Infect. Immun., 2021, vol. 89, no. 10, e0016221. https://doi.org/10.1128/IAI.00162-21

Lentini G., Famà A., De Gaetano G. V., Coppolino F., Mahjoub A. K., Ryan L., Lien E., Espevik T., Beninati C., Teti G. Caspase-8 inhibition improves the outcome of bacterial infections in mice by pro-moting neutrophil activation. Cell Rep. Med., 2023, vol. 4, no. 7, p.101098. https://doi.org/10.1016/j.xcrm.2023.101098

Lazzaro B. P., Zasloff M., Rolff J. Antimicrobial peptides: Application informed by evolution. Science, 2020, vol. 368, no. 6490, eaau5480. https://doi.org/10.1126/science.aau5480

Bazikov I. A., Maltsev A. N., Sedykh O. I., Baturin V. A., Bolatchiev A. D., Efremenko A. A. Isolation of endogenous antimicrobial peptides from blood cells. Bakteriologiia, 2020, vol. 5, no. 1, pp. 33–36.(In Russian)

Mermer S., Turhan T., Bolat E., Aydemir S., Yamazhan T., Pullukcu H., Arda B., Sipahi H., Ulusoy S.,Sipahi O. R. Ceftaroline versus vancomycin in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) in an experimental MRSA meningitis model. J. Glob. Antimicrob. Resist., 2020, vol. 22,pp. 147–151. https://doi.org/10.1016/j.jgar.2020.02.001

Amiss A. S., von Pein J. B., Webb J. R., Condon N. D., Harvey P. J., Phan M. D., Schembri M. A., Currie B. J., Sweet M. J., Craik D. J., Kapetanovic R., Henriques S. T., Lawrence N. Modified horseshoe crabpeptides target and kill bacteria inside host cells. Cell Mol. Life Sci., 2021, vol. 79, no. 1, p. 38. https://doi.org/10.1007/s00018-021-04041-z

Yang P., Guo W., Ramamoorthy A., Chen Z. Conformation and Orientation of Antimicrobial Peptides MSI-594 and MSI-594A in a Lipid Membrane. Langmuir, 2023, vol. 39, no. 15, pp. 5352–5363. https://doi.org/10.1021/acs.langmuir.2c03430

Greene A. C. CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense. Trends Biotechnol., 2018, vol. 36, pp. 127–130. https://doi.org/10.1016/j.tibtech.2017.10.021

Javed M. U., Hayat M. T., Mukhtar H., Imre K. CRISPR-Cas9 System: A Prospective Pathway to- ward Combatting Antibiotic Resistance. Antibiotics (Basel), 2023, vol. 12, no. 6, p.1075. https://doi.org/10.3390/antibiotics12061075

Kiga K., Tan X. E., Ibarra-Chávez R. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat. Commun., 2020, vol. 11, no. 1, p. 2934.

Inchagova K. S. Quorum sensing suppression of Chromobacterium violaceum by combinations ofamikacin with activated carbon or small molecules of plant origin (pyrogallol and coumarin). Mikro-biologiia, 2019, vol. 88, no. 1, pp. 72–82. (In Russian)

Zhang J. W., Guo C., Xuan C. G., Gu J. W., Cui Z. N., Zhang J., Zhang L., Jiang W., Zhang L. Q. High-Throughput, Quantitative Screening of Quorum-Sensing Inhibitors Based on a Bacterial Biosensor.ACS Chem. Biol., 2023, vol. 18, no. 12, pp. 2544–2554. https://doi.org/10.1021/acschembio.3c00537

Beus M., Savijoki K., Patel J. Z., Yli-Kauhaluoma J., Fallarero A., Zorc B. Chloroquine fumardiamides as novel quorum sensing inhibitors. Bioorg. Med. Chem. Lett., 2020, vol. 30, no. 16, p. 127336. https://doi.org/10.1016/j.bmcl.2020.127336

Almohaywi B., Yu T. T., Iskander G., Chan D. S. H., Ho K. K. K., Rice S., Black D. S., Griffith R., Kumar N. Dihydropyrrolones as bacterial quorum sensing inhibitors. Bioorg. Med. Chem. Lett., 2019,vol. 29, no. 9, pp. 1054–1059. https://doi.org/10.1016/j.bmcl.2019.03.004

Published

2025-01-22

How to Cite

Burmistrov, D., Grechman, A., Chernetsov, R., Iuziuk, V., & Bekmurzaeva, A. (2025). Вестник СПбГУ. Медицина. 2024. Т. 19. Вып. 3 277 Antibiotic resistance and new antimicrobial strategies: Exploring the problem of antibiotic resistance and the development of new drugs. Vestnik of Saint Petersburg University. Medicine, 19(3), 265–277. https://doi.org/10.21638/spbu11.2024.306

Issue

Section

Epidemiology