Changes in the cardiovascular system in patients with diabetes mellitus

Authors

  • Marina Vinogradova Volgograd State Medical University, 1, pl. Pavshikh Bortsov, Volgograd, 400066, Russian Federation https://orcid.org/0000-0001-8603-3142
  • Ekaterina Skvortsova Volgograd State Medical University, 1, pl. Pavshikh Bortsov, Volgograd, 400066, Russian Federation https://orcid.org/0000-0002-2164-3537
  • Vsevolod Skvortsov Volgograd State Medical University, 1, pl. Pavshikh Bortsov, Volgograd, 400066, Russian Federation https://orcid.org/0000-0002-2164-3537

DOI:

https://doi.org/10.21638/spbu11.2024.101

Abstract

In recent years, there have been serious changes in the close relationship between diabetes mellitus and cardiovascular diseases. From the early stages of insulin resistance and prediabetes to serious cardiac complications caused by diabetes. Coronary heart disease is the main 
cause of morbidity and mortality in diabetic patients, but not all diabetic patients have an equally high risk of heart attacks. More than a third of asymptomatic patients have no signs of coronary atherosclerosis and have a very low annual heart attack rate. Early detection of patients
with subclinical coronary artery atherosclerosis and/or significant obstructive coronary artery disease with asymptomatic myocardial infarction may help in making a therapeutic decision to prevent future devastating acute cardiovascular conditions. This article is devoted to the peculiarities of the course of cardiovascular diseases in concomitant diabetes mellitus, its role in increasing the frequency and severity of complications after acute cardiovascular episodes, as well as modern views on the therapy of this combined condition.

Keywords:

diabetes, atherosclerosis, arterial stiffness, cardiovascular risk, hyperglycemia, insulin resistance

Downloads

Download data is not yet available.
 

References


References

Ferrannini E., Mari A. β-cell function in type 2 diabetes. Metabolism, 2014, vol. 63, pp. 1217–1227.

Jung U. J., Choi M. S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci., 2014, vol. 15, pp. 6184–6223.

Kattoor A. J., Pothineni N. V. K., Palagiri D., Mehta J. L. Oxidative stress in atherosclerosis. Curr. Atheroscler.Rep., 2017, vol. 19, p. 42.

Miller M. E., Williamson J. D., Gerstein H. C. Effects of randomization to intensive glucose control on adverse events, cardiovascular disease, and mortality in older versus younger adults in the ACCORD trial. Diabetes Care, 2014, vol. 37, pp. 634–643.

Gæde P., Oellgaard J., Carstensen B. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial.Diabetologia, 2016, vol. 59, pp. 2298–2307.

Giordano A., Murano I., Mondini E. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J. Lipid Res., 2013, vol. 54, pp. 2423–2436.

Antoniades C. “Dysfunctional” adipose tissue in cardiovascular disease: A reprogrammable target or an innocent bystander? Cardiovasc. Res., 2017, vol. 11, pp. 3997–998.

Camastra S., Vitali A., Anselmino M. Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric surgery. Sci. Rep.,2017, vol. 7, p. 9007.

Meijer R. I., De Boer M. P., Groen M. R. Insulin-induced microvascular recruitment in skin and muscle are related and both are associated with whole-body glucose uptake. Microcirculation, 2012, vol. 19, pp. 494–500.

Savoia C., Sada L., Zezza L., Pucci L., Lauri F. M., Befani A., Alonzo A., Volpe M. Vascular inflammation and endothelial dysfunction in experimental hypertension. Int. J. Hypertens., vol. 2011, article ID 281240. https://doi.org/10.4061/2011/281240

Harvey A., Montezano A. C., Touyz R. M. Vascular biology of ageing-Implications in hypertension. J. Mol. Cell. Cardiol., 2015, vol. 83, pp. 112–121.

Guzik T. J., Touyz R. M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension,2017, vol. 70, pp. 660–667.

Barton M., Husmann M., Meyer M. R. Accelerated vascular aging as a paradigm for hypertensive vascular disease: Prevention and therapy. Can. J. Cardiol., 2016, vol. 32, pp. 680–686.

Yin H., Pickering J. G. Cellular senescence and vascular disease: Novel routes to better understanding and therapy. Can. J. Cardiol., 2016, vol. 32, pp. 612–623.

Zhang X., Saaddine J. B., Chou C. F. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA, 2010, vol. 304, pp. 649–656.

Ruta L. M., Magliano D. J., Lemesurier R., Taylor H. R., Zimmet P. Z., Shaw J. E. Prevalence of diabetic retinopathy in Type 2 diabetes in developing and developed countries. Diabet Med., 2013, vol. 30,no. 4, pp. 387–398. https://doi.org/10.1111/dme.12119

Mohammedi K., Woodward M., Marre M. Comparative effects of microvascular and macrovascular disease on the risk of major outcomes in patients with type 2 diabetes. Cardiovasc. Diabetol., 2017,vol. 16, p. 95.

Madonna R., Balistreri C. R., Geng Y. J., de Caterina R. Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vascul. Pharmacol., 2017, vol. 90, pp.1–7.

Vlassara H., Uribarri J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr. Diab. Rep.,2014, vol. 14, no. 1, p. 453.

Nigro C., Leone A., Raciti G. A. Methylglyoxal-glyoxalase 1 balance: The root of vascular damage. Int.J. Mol. Sci., 2017, vol. 18, pp. 188–202.

Manigrasso M. B., Juranek J., Ramasamy R., Schmidt A. M. Unlocking the biology of RAGE in diabetic microvascular complications.Trends Endocrinol. Metab., 2014, vol. 25, pp. 15–22.

Koulis C., Watson A. M., Gray S. P., Jandeleit-Dahm K. A. Linking RAGE and Nox in diabetic microand macrovascular complications. Diabetes Metab., 2015, vol. 41, pp. 272–281.

Frimat M., Daroux M., Litke R. Kidney, heart and brain: Three organs targeted by ageing and glycation.Clin. Sci. (Lond), 2017, vol. 131, pp. 1069–1092.

Schmidt A. M. 2016 ATVB Plenary Lecture: Receptor for advanced glycation endproducts and implications for the pathogenesis a treatment of cardiometabolic disorders: Spotlight on the macrophage.Arterioscler. Thromb Vasc. Biol., 2017, vol. 37, pp. 613–621.

Nenna A., Nappi F., Avtaar Singh S. S. Pharmacologic approaches against advanced glycation end products (AGEs) in diabetic cardiovascular disease. Res. Cardiovasc. Med., 2015, vol. 4, p. e26949.

Adeshara K. A., Diwan A. G., Tupe R. S. Diabetes and complications: Cellular signaling pathways, current understanding and targeted therapies. Curr. Drug Targets, 2016, vol. 17, pp. 1309–1328.

Sedeek M., Montezano A. C., Hebert R. L. Oxidative stress, Nox isoforms and complications of diabetes-potential targets for novel therapies. J. Cardiovasc. Transl. Res., 2012, vol. 5, pp. 509–518.

Newsholme P., Cruzat V. F., Keane K. N., Carlessi R., de Bittencourt P. I., Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, vol. 473, pp. 4527–4550.

Gray S. P., Di Marco E., Okabe J. NADPH oxidase 1 plays a key role in diabetes mellitus accelerated atherosclerosis. Circulation, 2013, vol. 127, pp. 1888–1902.

Gray S. P., Di Marco E., Kennedy K. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler. Thromb Vasc. Biol., 2016,vol. 36, pp. 295–307.

Jha J. C., Gray S. P., Barit D. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol., 2014, vol. 25,pp. 1237–1254.

Sedeek M., Gutsol A., Montezano A. C. Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin. Sci. (Lond), 2013, vol. 124, pp. 191–202.

Holterman C. E., Thibodeau J. F., Towaij C. Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J. Am. Soc. Nephrol., 2014, vol. 25, pp. 784–797.

Jha J. C., Banal C., Okabe J. NADPH oxidase Nox5 accelerates renal injury in diabetic nephropathy. Diabetes. 2017, vol. 66, pp. 2691–2703.

Mooradian A. D. Targeting select cellular stress pathways to prevent hyperglycemia-related complications: Shifting the paradigm. Drugs, 2016, vol. 76, pp. 1081–1091.

Published

2024-08-26

How to Cite

Vinogradova, M., Skvortsova, E., & Skvortsov, V. (2024). Changes in the cardiovascular system in patients with diabetes mellitus. Vestnik of Saint Petersburg University. Medicine, 19(1), 4–13. https://doi.org/10.21638/spbu11.2024.101

Issue

Section

Cardiology