Automatic scoliosis angle measurement using deep learning methods, how far we are from clinical application: A narrative review

Авторы

  • Дима Кассаб St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Ирина Камышанская St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Андрей Першин Federal Scientific Center of Rehabilitation of the Disabled named after G. A. Albrecht of the Ministry of Labour and Social Protection of the Russian Federation, 50, Bestuzhevskaya ul., St. Petersburg, 195067, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2021.202

Аннотация

In recent years, automatic measurement of scoliosis angle using deep learning (DL) techniques is being studied extensively. The objective of this study is to review and assess the clinical applicability of these new methods. A wide search for English and Russian literature was conducted, 13 studies were included. Although the results of many of the reviewed DL methods in measuring the angle of scoliosis are promising, their clinical implication is by far not possible. There is absence of consensus in many issues regarding these new methods (differences in architecture of the ANN, data set, principle of angle measurement and nature of the reported results). In order to successfully introduce these new methods into clinical practice, more comparative and prospective studies are needed. Also, a multidisciplinary team including technical and medical workers is needed.

 

Ключевые слова:

scoliosis, automated Сobb angle, artificial neural network, deep learning

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки


References

Machida M., Weinstein S. L., Dubousset J. Pathogenesis of idiopathic scoliosis. Tokyo: Springer Nature,2018. 124 p.

2016 SOSORT guidelines: orthopedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis and Spinal Disorders, 2018. Available at: https://scoliosisjournal.biomedcentral.com/ articles/10.1186/s13013-017-0145–8 (accessed: 20.03.2021).

Lee J. G., Jun S., Cho Y-W., Lee H., Kim G. B., Seo J. B., Kim N. Deep Learning in Medical Imaging: General Overview. Korean J. Radiol., 2017, vol. 18, no. 4, pp. 570–584.

Wang L., Xu Q., Leung S., Chung J., Chen B., Li S. Accurate automated Cobb angles estimation using multi-view extrapolation net. Med. Image Anal., 2019, vol. 58, 101542.

Horng M., Kuok C., Fu M., Sun Y. Cobb Angle Measurement of Spine from X-Ray Images Using Convolutional Neural Network. Computational and Mathematical Methods in Medicine, 2019, vol. 9,pp. 1–18.

Lein G. A., Nechaeva N. S., Mamedova G. M., Smirnov A. A., Statsenko M. M. Automation analysis Xray of the spine to objectify the assessment of the severity of scoliotic deformity in idiopathic scoliosis: A preliminary report. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 2020, vol. 8,no. 3, pp. 317–326.

Wu H., Bailey C., Rasoulinejad P., Li S. Automated comprehensive Adolescent Idiopathic scoliosis assessment using MVC-net. Med. Image Anal., 2018, vol. 48, pp. 1–11.

Kim K. C., Yun H. S., Kim S., Seo J. K. Automation of Spine Curve Assessment in Frontal Radiographs Using Deep Learning of Vertebral-Tilt Vector. IEEE, 2020, vol. 8, pp. 84618–84630.

Padalko М. А., Orlov V., Naumov А. М., Nazarikov C. I., Aleksandrovich L. A. Automatic system to determine the angle of scoliotic deformation. Fiziko-Matematicheskie Nauki, 2019, vol. 3, pp. 55-68.(In Russian)

Khanal B., Dahal L., Adhikari P. Automatic Cobb Angle Detection using Vertebra Detector and Vertebra Corners Regression. computational methods and clinical applications for spine imaging 2019.Lecture Notes in Computer Science, vol. 11963, Springer, Cham, pp. 81–87.

Watanabe K., Aoki Y., Matsumoto M. An Application of Artificial Intelligence to Diagnostic Imaging of Spine Disease: Estimating Spinal Alignment from Moiré Images. Neurospine, 2019, vol. 16, no. 4,pp. 697–702.

Bernstein P., Metzler J., Weinzierl M. Radiographic scoliosis angle estimation: spline-based measurement reveals superior reliability compared to traditional COBB method.JOR Spine, 2021, vol. 30,no. 3, pp. 676–685.

Galbusera F., Casaroli G., Bassani T. Artificial intelligence and machine learning in spine research. JOR Spine, 2019, vol. 2, e1044.

Dubost F., Collery B., Renaudier A., Roc A., Posocco N., Niessen W., Bruijne M. Automated Estimation of the Spinal Curvature via Spine Centerline Extraction with Ensembles of Cascaded Neural

Networks. Computational Methods and Clinical Applications for Spine Imaging. Shenzhen: Springer international publishing, 2019.

Pan Y., Chen Q., Chen T., Wang H., Zhu X., Fang Z., Lu Y. Evaluation of a computer-aided method for measuring the Cobb angle on chest X-rays. Eur. Spine J., 2019, vol. 28, no. 12, pp. 3035–3043.

Sun H., Zhen X., Bailey C., Rasoulinejd P., Yin Y., Li S. Direct estimation of spinal cobb angles by structured multi-output regression. International Conference on Information Processing in Medical Imaging,2017, pp. 529–540.

Wu H., Bailey C., Rasoulinejad P., Li S. Automatic landmark estimation for adolescent idiopathic scoliosis assessment using boost net. Con Medical Image Computing and Computer Assisted Interventions,2017, pp. 127–135.

Tu Y., Wang N., Tong F., Chen H. Automatic measurement algorithm of scoliosis Cobb angle based on deep learning. Journal of Physics: Conf. Series, 2019, vol. 1187, iss. 4, 042100.

Chen K., Zhai X., Yang C., Sun K., Wang H., Li M. A narrative review of machine learning as promising revolution in clinical practice of scoliosis. Annals of Translational Medicine, 2021, vol. 9, no. 1. Available at: https://atm.amegroups.com/article/view/60113/html (accessed: 03.03.2021).

Загрузки

Опубликован

16.06.2021

Как цитировать

Кассаб, Д., Камышанская, И., & Першин, А. (2021). Automatic scoliosis angle measurement using deep learning methods, how far we are from clinical application: A narrative review. Вестник Санкт-Петербургского университета. Медицина, 16(2), 85–94. https://doi.org/10.21638/spbu11.2021.202

Выпуск

Раздел

Онкология