Transforming growth factor beta 1. Biological role and clinical significance

Authors

  • Olga Mosunova First St. Petersburg State Medical University named after Academician I. P. Pavlov, 6–8, ul. L’va Tolstogo, St. Petersburg, 197022, Russian Federation
  • Elena Dementyeva St. Petersburg State Pediatric Medical University, 2, Litovskaya ul., St. Petersburg, 194100, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2020.106

Abstract

One of the most important representatives of the cytokine family is the transforming growth factor beta 1 (TGF beta 1). The purpose of the review is to study the biological role and clinical significance of TGF beta 1. Using PubMed databases, eLIBRARY, Google Scholar, keywords “cytokines”, “TGF beta 1” found 25,518 sources, 50 selected for analysis. TGF beta 1 is a polyvalent cytokine first isolated from platelets in the 1990s.TGF beta 1 belongs to the family of dimeric polypeptides with a molecular weight of 25 kDa. The gene encoding TGF beta 1 is found in humans on chromosome 19. TGF beta 1 has a pleiotropic effect on the proliferation and differentiation of a wide range of cells, and therefore regulates many physiologic and pathophysiologic processes: immune response, apoptosis, fibrogenesis, and carcinogenesis. TGF beta 1 has an effect on almost all organs and tissues. TGF beta 1 is a key marker that can be used in the diagnosis of a number of diseases. It is necessary to further study the role of TGF beta 1 in the pathophysiologic mechanisms of various diseases, as well as in the development of approaches to targeted therapy.

Keywords:

transforming growth factor beta 1, TGF beta 1, cytokines, cell proliferation, immune response, carcinogenesis, fibrogenesis

Downloads

Download data is not yet available.
 

References


References

Verlan N. V. Interferon use: immunological and clinical aspects. Tsitokiny i vospalenie, 2016, vol. 15,no. 1, pp. 12–21. (In Russian)

Blobe G. C., Schiemann W. P., Lodish H. F. Role of transforming growth factor beta in human disease.N. Engl. J. Med., 2000, vol. 342, no. 18, pp. 1350–1358.

Lee S. J., Kim K. H, Park K. K. Mechanisms of fibrogenesis in liver cirrhosis: the molecular aspects of epithelialmesenchymal transition. World J. Hepatol., 2014, vol. 6, no. 4, pp. 207–216.

Wynn T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol., 2008, vol. 214, no. 2, pp. 199–210.

Zubova S. G. Influence of ionizing radiation on the expression of transforming growth factor beta.II Bulleten’ eksperimental’noi biologii i meditsiny, 1998, vol. 126, no. 11, pp. 529–533. (In Russian)

Zubova S. G. Synthesis and expression of transforming growth factor beta by activated macrophages. Voprosy onkologii, 1996, vol. 42, no. 5, pp. 80–85. (In Russian)

Bakin A. V., Rinehart C., Tomlinson A. K., Arteaga C. L. p38 mitogen-activated protein kinase is required for TGF-beta-mediated fibroblastic transdifferentiation and cell migration. J. Cell. Sci., 2002, vol. 115, Pt 15, pp. 3193–3206.

Barton D., Foellmer B. E., Du J., Tamm J., Derynck R., Francke U. Chromosomal mapping of genes for transforming growth factors beta-2 and beta-3 in man and mouse: dispersion of TGF-beta gene family. Oncogene Res., 1988, vol. 3, no. 4, pp. 223–331.

Lee C. G. Cho S. J., Kang M. J., Chapoval S. P., Lee P. J., Noble P. W., Yehualaeshet T., Lu B., Flavell R. A., Milbrandt J., Homer R. J., Elias J. A. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor β1–induced pulmonary fibrosis. J. Exp. Med., 2004, vol. 200, no. 3, pp. 377–389.

Xaubet A., Marin-Arguedas A., Lario S., Ancochea J., Morell F., Ruiz-Manzano J., Rodriguez-Becerra E., Rodriguez-Arias J. M., Inigo P., Sanz S., Campistol J. M., Mullol J., Picado C. Transforming growth factor-beta 1 gene polymorphisms are associated with disease progression in idiopathic pulmonary fibrosis. American journal of respiratory and сritical сare мedicine, 2003, vol. 168, no. 4,pp. 431–435.

Blobe G. C., Schiemann W. P., Lodish H. F. Role of transforming growth factor beta in human disease.N. Engl. J. Med., 2000, vol. 342, no. 18, pp. 1350–1358.

Engel M. E., Datta P. K., Moses H. L. Signal transduction by transforming growth factor beta: a cooperative paradigm with extensive negative regulation. J. Cell. Biochem. Suppl., 1998, no. 30-31,pp. 111–122.

Pelipenko L. V., Sergienko A. V., Ivashev M. N. Effects of transforming growth factor beta-1. Mezhdunarodnyi zhurnal eksperimental’nogo obrazovaniia, 2015, vol. 3, no. 4, pp. 558–559. (In Russian)

Clement A., ERS Task Force. Task force on chronic interstitial lung disease in immunocompetent children.Eur. Respir. J., 2004, vol. 24, no. 4, pp. 686–697.

Ivchik T. V., Kokosov A. N., Yanchina E. D. Risk factors for chronic obstructive pulmonary disease.Pul’monologiia, 2003, no. 3, pp. 6–15. (In Russian)

Stern D. A., Morgan W. J., Wright A. L., Guerra S., Martinez F. D. Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet, 2007, vol. 370, no. 9589, pp. 758–764.

Smith E. R., Wigg B., Holt S. G., Hewitson T. D. TGF-β1 modifies histone acetylation and acetyl-coenzyme A metabolism in renal myofibroblasts. Am. J. Physiol. Renal. Physiol., 2019, no. 316, pp. F517–F529.

Ses’ P. S., Gavrisheva N. A., Fedulov A. V., MacMillan J. C. Dynamics of the content of transforming growth factor beta 1 and tumor necrosis factor alpha in serum in experimental chronic renal failure. Meditsinskaia immunologiia, 2003, vol. 5, no. 1–2, pp. 133–136. (In Russian)

Kanwar Y. S., Wada J., Sun L., Xie P., Wallner E. I., Chen S., Chugh S., Danesh F. R. Diabetic nephropathy: mechanisms of renal disease progression. Exp. Biol. Med., 2008, vol. 233, no. 1, pp. 4–11.

Soldatos G., Cooper M. E. Diabetic nephropathy: important pathophysiologic mechanisms. Diabetes Res. Clin. Pract., 2008, vol. 82, no. 1, pp. S75–S79.

Zhong X., Chung A. C., Chen H. Y., Meng X. M., Lan H. Y. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. Clin. J. Am. Soc. Nephrol., 2011, vol. 22, no. 9, pp. 1668–1681.

Kempinski R., Neubauer K., Poniewierka E., Kaczorowski M., Halon A. The immunoreactivity of TGF-b1 in non-alcoholic fatty liver disease. Folia Histochem. Cytobiol., 2019, vol. 57, no. 2,pp. 74–83.

Soni U. K., Chadchan S. B., Kumar V., Ubba V., Khan M. T. A., Vinod B. S. V., Konwar R., Bora H. K., Rath S. K., Sharma S., Jha R. K. A high level of TGF-B1 promotes endometriosis development via cell migration, adhesiveness, colonization, and invasiveness. Biol. Reprod., 2019, vol. 100, no. 4,pp. 917–938.

Shen J., Zhao D. S., Li M. S. TGF-β1 promotes human gastric carcinoma SGC7901 cells invasion by inducing autophagy. Eur. Rev. Med. Pharmacol. Sci., 2017, vol. 21, no. 5, pp. 1013–1019.

Steinsvoll S., Halstensen T. S., Schenck K. Extensive expression of TGF-B1 in chronically-inflamed periodontal tissue. Journal of clinical periodontology, 1999, vol. 26, no. 6, pp. 366–373.

Shehata H. H., Abou Ghalia A. H., Elsayed E. K., Ahmed Said A. M., Mahmoud S. S. Clinical significance of high levels of survivin and transforming growth factor beta-1 proteins in aqueous humor and serum of retinoblastoma patients. J. AAPOS, 2016, vol. 20, no. 5, pp. 444.е1–444.е9.

Babyshkina N. N., Malinovskaya E. A., Staheeva M. N., Volkomorov V. V., Ufandeev A. A., Slonimskaya E. M. The role of transforming growth factor TGF-β 1 in the pathogenesis of breast cancer. Sibirskii onkologicheskii zhurnal, 2010, vol. 6, no. 42, pp. 63-70. (In Russian)

Bierie B., Moses H. L. TGF-beta and cancer. Cytokine growth factor. Rev., 2006, no. 17, pp. 29–40.

Kuwano K., Kawasaki М., Maeyama Т. Soluble form of fas and fas ligand in BAL fluid from patients with pulmonary fibrosis and bronchiolitis obliterans organizing pneumonia. Chest, 2000, vol. 118,no. 2, pp. 451–458.

Matyas G., Naef P., Tollens M., Oexle K. De novo mutation of the latency-associated peptide domain of TGF-β3 in a patient with overgrowth and Loeys-Dietz syndrome features. Am. J. Med. Genet., 2014, vol. 164A, no. 8, pp. 2141–2143.

Graycar J. L., Miller D. A., Arrick B. A., Lyons R. M., Moses H. L., Derynck R. Human transforming growth factor-beta-3: recombinant expression, purification and biological activities in comparison with transforming growth factors-beta-1 and beta2. Molec. Endocr., 1989, vol. 3, no. 12, pp. 1977–1986.

Hagimoto N., Kuwano К., Miyazaki Н. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of fas antigen. Am. J. Respir. Cell Mol. Biol., 1997, vol. 17, no. 3, pp. 272–278.

Horikoshi T., Maeda K., Kawaguchi Y., Chiba K., Mori K., Koshizuka Y., Hirabayashi S., Sugimori K., Matsumoto M., Kawaguchi H., Takahashi M., Inoue H., Kimura T., Matsusue Y., Inoue I., Baba H., Nakamura K., Ikegawa S. A large-scale genetic association study of ossification of the posterior longitudinal ligament of the spine. Hum. Genet., 2006, vol. 119, no. 6, pp. 611–616.

Lee B. S., Nowak R. A. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta-3 (TGF-beta-3) and altered responses to the antiproliferative effects of TGFbeta. J. Clin. Endocr. Metab.,2001, vol. 86, no. 2, pp. 913–920.

Siegel P., Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat. Rev. Cancer., 2003, vol. 3, no. 11, pp. 807–821.

Beffagna G., Occhi G., Nava A., Vitiello L., Ditadi A., Basso C., Bauce B., Carraro G., Thiene G., Towbin J. A., Danieli G. A., Rampazzo A. Regulatory mutations in transforming growth factor-beta-3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc. Res., 2005, vol. 65, no. 2, pp. 366–373.

Bertoli-Avella A. M., Gillis E., Morisaki H., Verhagen J. M. A., de Graaf B. M., van de Beek G., Gallo E. et al. Mutations in a TGF-beta ligand, TGFβ3, cause syndromic aortic aneurysms and dissections.J. Am. Coll. Cardiol., 2015, vol. 65, no. 13, pp. 1324–1336.

Moustakas A., Pardali K., Gaal A., Heldin C. H. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol. Lett., 2002, vol. 82, no. 1–2, pp. 85–91.

Moren A., Ichijo Н., Miyazono К. Molecular cloning and characterization of the human and porcine transforming growth factor-beta type III receptors. Biochem. Biophys. Res. Commun., 1992, vol. 189, no. 1, pp. 356–362.

Dickinson M. E., Kobrin M. S., Silan C. M., Kingsley D. M., Justice M. J., Miller D. A., Ceci J. D. et al. Chromosomal localization of seven members of the murine TGF-beta superfamily suggests close linkage to several morphogenetic mutant loci. Genomics, 1990, vol. 6, no. 3, pp. 505–520.

Feng X. H., Filvaroff E. H., Derynck R. Transforming growth factor-beta (TGF-beta)-induced downregulation of cyclin A expression requires a functional TGF-beta receptor complex. Characterization of chimeric and truncated type I and type II receptors. J. Biol. Chem., 1995, vol. 270, no. 41, pp. 24237–24245.

Dementyeva E. A., Gurina O. P. Immunological changes accompanying the development of experimental neoplastic process. Pediatrician (St. Petersburg), 2015, vol. 6, no. 2, pp. 96–108. (In Russian)

Rudoy A. S. TGF-beta-dependent mechanisms of pathogenesis of Marfan syndrome and related disorders. Arterial’naia gipertenziia, 2009, vol. 15, no. 2, pp. 223–226. (In Russian)

Judge D., Dietz H. Marfan’s syndrome. Lancet, 2005, vol. 366, pp. 1965–1976.

Kalashnikova A. V., Mudzhikova O. M., Noda M., Ses’ T. P., Stroev Yu. I., Churilov L. P. Role of autacoids in pathogenesis of endocrine disoders in non-syndromal marfanoid phenotype. Vestnik of Saint Petersburg University. Medicine, 2009, vol. 11, no. 4, pp. 5–16. (In Russian)

Timofeev E. V., Malev E. G., Luneva E. B., Zemtsovsky E. V. The activity of transforming growth factor-β in young age with marfanoid habitus. Pediatrician (St. Petersburg), 2019, vol. 10, no. 1, pp. 49–56. (In Russian)

Mizuguchi T., Matsumoto N. Recent progress in genetics of Marfan syndrome and Marfanassociated disorders. J. Hum. Genet., 2007, vol. 52, no. 1, pp. 1–12.

Neptune E. R., Frischmeyer P. A., Arking D. E., Myers L., Bunton T. E., Gayraud B., Ramirez F., Sakai L. Y., Dietz H. C. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet., 2003, vol. 33, no. 3, pp. 407–411.

Coucke P., Willaert A., Wessels M. et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat. Genet., 2006, vol. 38, pp. 452–457.

Li B., Khanna A., Sharma V. et al. TGF–β1 DNA polymorphisms, protein levels, and blood pressure. Hypertension, 1999, vol. 33, pp. 271–275.

Downloads

Published

2020-11-18

How to Cite

Mosunova, O., & Dementyeva, E. (2020). Transforming growth factor beta 1. Biological role and clinical significance. Vestnik of Saint Petersburg University. Medicine, 15(1), 49–55. https://doi.org/10.21638/spbu11.2020.106

Issue

Section

Pathological physiology

Most read articles by the same author(s)