Screening assessment of antibacterial activity of Thymus serpyllum L., Thymus marsсhallianus Willd. and Pimpinella anisum L. essential oils against uropathogens, isolated from pregnant women

Authors

  • Olga Shapoval Saratov State Medical University named after V. I. Razumovsky, 112, ul. Bolshaya Kazachia, Saratov, 410012, Russian Federation
  • Anna Sheremetyeva Saratov State Medical University named after V. I. Razumovsky, 112, ul. Bolshaya Kazachia, Saratov, 410012, Russian Federation
  • Natalia Durnova Saratov State Medical University named after V. I. Razumovsky, 112, ul. Bolshaya Kazachia, Saratov, 410012, Russian Federation
  • Nurali Mukhamadiev Samarkand State University named after Sh. Rashidov, 15, Universitetskiy bul., Samarkand, 140104, Uzbekistan
  • Gulnora Rabbimova Samarkand State Medical University, 18, ul. Amira Temura, Samarkand, 140100, Uzbekistan
  • Mavlon Nazirbekov Scientific Center for Quality Control and Turnover of Veterinary Medicines, Feed Additives, 100, ul. Didor, Tashkent, 100208, Uzbekistan

DOI:

https://doi.org/10.21638/spbu11.2023.205

Abstract

Plant essential oils of certain genera and species are important sources of antimicrobial substances.The goal of this study was a screening assessment of antibacterial activity of Thymus serpyllum L., Thymus marsсhallianus Willd. and Pimpinella anisum L. essential oils against opportunistic gram-negative uropathogens. The essential oils were obtained by steam hydrodistillation, and the screening assessment of their antibacterial activity was performed by the disk diffusion method. Two standard species (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922) and 6 clinical strains (1 — P. aeruginosa, 5 — E. coli), isolated from the pregnant women with infections of the urinary passages, were used as the test bacterial cultures. The study determined that T. marsсhallianus Willd. and T. serpyllum L. essential oils possess strong inhibitory action on all test cultures until the absence of the bacterial lawn. P. anisum L. essential oil did not show antibacterial activity against all test strains, no zones of visible bacterial growth inhibition were formed. T. serpyllum L. and T. marsсhallianus Willd. essential oils are promising antibacterial agents against uropathogens of the species P. aeruginosa and E. coli. 

Keywords:

plant essential oils, antibacterial activity, uropathogens, P. aeruginosa, E. coli, disk diffusion method

Downloads

Download data is not yet available.
 

References

Литература

Winska K., Maczka W., Lyczko J., Grabarczyk M., Czubaszek A., Szumny A. Essential oils as antimicrobial agents — myth or real alternative? // Molecules. 2019. Vol. 24, no. 11, art. 2130. https://doi.org/10.3390/molecules24112130.

Białon M., Krzysko-Lupicka T., Nowakowska-Bogdan E., Wieczorek P. P. Chemical composition of two different lavender essential oils and their effect on facial skin microbiota // Molecules. 2019. Vol. 24, no. 18, art. 3270. https://doi.org/10.3390/molecules24183270.

Sakkas H., Papadopoulou C. Antimicrobial activity of basil, oregano, and thyme essential oils // J. Microbiol. Biotechnol. 2017. Vol. 27, no. 3. P. 429–438. https://doi.org/ 10.4014/jmb.1608.08024.

Moumni S., Elaissi A., Trabelsi A., Merghni A., Chraief I., Jelassi B., Chemli R., Ferchichi S. Correlation between chemical composition and antibacterial activity of some Lamiaceae species essential oils from Tunisia // BMC Complement. Med. Ther. 2020. Vol. 20, art. 103. https://doi.org/10.1186/s12906-020-02888-6.

Гладкова В. Н., Меницкий Ю. Л. Флора европейской части СССР: в 11 т. Т. 3. Л.: Наука, 1978.259 с.

Lagha R., Ben Abdallah F., AL-Sarhan B. O., Al-Sodany Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against Escherichia coli isolated from UTI patients // Molecules. 2019. Vol. 24, no. 6, art. 1161. https://doi.org/10.3390/molecules24061161.

Гланц С. Медико-биологическая статистика. М.: Практика, 1999. 459 с.

Mahdavi V., Hosseini S. E., Sharifian A. Effect of edible chitosan film enriched with anise (Pimpinella anisum L.) essential oil on shelf life and quality of the chicken burger // Food Sci. Nutr. 2018. Vol. 6,no. 2. P. 269–279. https://doi.org/10.1002/fsn3.544.

Valdivieso-Ugarte M., Gomez-Llorente C., Plaza-Diaz J., Gil A.Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: a systematic review // Nutrients. 2019. Vol. 11, no. 11, art. 2786. https://doi.org/10.3390/nu11112786.

Noori N., Khanjari A., Rezaeigolestani M., Karabagias I. K., Mokhtari S. Development of antibacterial biocomposites based on poly (lactic acid) with spice essential oil (Pimpinella anisum) for food applications // Polymers. 2021. Vol. 13, no. 21, art. 3791. https://doi.org/10.3390/polym13213791.

Rua J., del Valle P., de Arriaga D., Fernandez-Alvarez L., Garcıa-Armesto M.-R. Combination of carvacrol and thymol: antimicrobial activity against Staphylococcus aureus and antioxidant activity // Foodborne Pathog. Dis. 2019. Vol. 16, no. 9. P. 622–629. https://doi.org/10.1089/fpd.2018.2594.

Райкова С. В., Дурнова Н. А., Приходько В. В., Немоляева Е. К., Пластун В. О. Антимикробная активность экстрактов очитков (Sedum maximum (L.) Hoffm., Sedum telephium L.), полученных разными методами // Саратовский научно-медицинский журнал. 2017. Т. 13, № 2. С. 213–216.

Guimaraes A. C., Meireles L. M., Lemos M. F., Guimaraes M., Endringer D. C., Fronza M., Scherer R.Antibacterial activity of terpenes and terpenoids present in essential oils // Molecules. 2019. Vol. 24,no. 13, art. 2471. https://doi.org/10.3390/molecules24132471.

Kowalczyk A., Przychodna M., Sopata S., Bodalska A., Fecka I. Thymol and thyme essential oil — new insights into selected therapeutic applications // Molecules. 2020. Vol. 25, no. 18, art. 4125. https://doi.org/10.3390/molecules25184125.

Шаповал О. Г., Шереметьева А. С., Дурнова Н. А., Мухамадиев Н. К., Раббимова Г. Т., Назирбеков М. Х. Сравнительная оценка антибактериальной активности эфирных масел Thymus serpyllum L., Thymus marsсhallianus Willd. и Pimpinella anisum L. в отношении грамотрицательных бактерий — возбудителей уроинфекций у беременных женщин // Вестник биотехнологии и физико-химической биологии им. Ю. А. Овчинникова. 2022. Т. 18, № 3. C. 63–69.

Nagoor Meeran M. F., Javed H., Al Taee H., Azimullah S., Ojha S. K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development // Frontiers in Pharmacology. 2017. Vol. 8, art. 380. https://doi.org/10.3389/fphar.2017.00380.

Sadgrove N. J., Padilla-Gonzalez G. F., Leuner O., Melnikovova I., Fernandez-Cusimamani E. Pharmacology of natural volatiles and essential oils in food, therapy, and disease prophylaxis // Frontiers in Pharmacology. 2021. Vol. 12, art. 740302. https://doi.org/10.3389/fphar.2021.74030.


References

Winska K., Maczka W., Lyczko J., Grabarczyk M., Czubaszek A., Szumny A. Essential oils as

antimicrobial agents — myth or real alternative? Molecules, 2019, vol. 24, no. 11, art. 2130. https://doi.org/10.3390/molecules24112130.

Białon M., Krzysko-Lupicka T., Nowakowska-Bogdan E., Wieczorek P. P. Chemical composition of two different lavender essential oils and their effect on facial skin microbiota. Molecules, 2019, vol. 24,no. 18, art. 3270. https://doi.org/10.3390/molecules24183270.

Sakkas H., Papadopoulou C. Antimicrobial activity of basil, oregano, and thyme essential oils. J. Microbiol. Biotechnol., 2017, vol. 27, no. 3, pp. 429–438. https://doi.org/10.4014/jmb.1608.08024.

Moumni S., Elaissi A., Trabelsi A., Merghni A., Chraief I., Jelassi B., Chemli R., Ferchichi S. Correlation between chemical composition and antibacterial activity of some Lamiaceae species essential oils from Tunisia. BMC Complement. Med. Ther., 2020, vol. 20, art. 103. https://doi.org/10.1186/s12906-020-02888-6.

Gladkova V. N., Menitsky Y. L. Flora of the European part of the USSR: in 11 vols. Vol. 3. Leningrad,Nauka Publ., 1978, 259 p. (In Russian)

Lagha R., Ben Abdallah F., AL-Sarhan B. O., Al-Sodany Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against Escherichia coli isolated from UTI patients. Molecules, 2019,vol. 24, no. 6, art. 1161. https://doi.org/10.3390/molecules24061161.

Glants S. Medico-biological statistics. Moscow, Praktika Publ., 1999. 459 p. (In Russian)
Mahdavi V., Hosseini S. E., Sharifian A. Effect of edible chitosan film enriched with anise (Pimpinella anisum L.) essential oil on shelf life and quality of the chicken burger. Food Sci. Nutr., 2018, vol. 6, no. 2, pp. 269–279. https://doi.org/10.1002/fsn3.544.

Valdivieso-Ugarte M., Gomez-Llorente C., Plaza-Diaz J., Gil A. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: a systematic review. Nutrients, 2019, vol. 11, no. 11, art. 2786. https://doi.org/10.3390/nu11112786.

Noori N., Khanjari A., Rezaeigolestani M., Karabagias I. K., Mokhtari S. Development of antibacterial biocomposites based on poly (lactic acid) with spice essential oil (Pimpinella anisum) for food applications.Polymers, 2021, vol. 13, no. 21, art. 3791. https://doi.org/10.3390/polym13213791.

Rua J., del Valle P., de Arriaga D., Fernandez-Alvarez L., Garcıa-Armesto M.-R. Combination of carvacrol and thymol: antimicrobial activity against Staphylococcus aureus and antioxidant activity. Foodborne Pathog. Dis., 2019, vol. 16, no. 9, pp. 622–629. https://doi.org/10.1089/fpd.2018.2594.

Raikova S. V., Durnova N. A., Prikhodko V. V., Nemolyaeva E. K., Plastun V. O. Antimicrobial activity of herbal extracts from Sedum maximum (L.) Hoffm., Sedum telephium L. received by different methods. Saratov Journal of Medical Scientific Research, 2017, vol. 13, no. 2, pp. 213–216. (In Russian)

Guimaraes A. C., Meireles L. M., Lemos M. F., Guimaraes M., Endringer D. C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 2019, vol. 24,no. 13, art. 2471. https://doi.org/10.3390/molecules24132471.

Kowalczyk A., Przychodna M., Sopata S., Bodalska A., Fecka I. Thymol and thyme essential oil — new insights into selected therapeutic applications. Molecules, 2020, vol. 25, no. 18, art. 4125. https://doi.org/10.3390/molecules25184125.

Shapoval O. G., Sheremetyeva A. S., Durnova N. A., Mukhamadiev N. K., Rabbimova G. T., Nazirbekov M. Kh. Comparative evaluation of the antibacterial activity of the essential oils of Thymus serpyllum L., Thymus marsсhallianus Willd. and Pimpinella anisum L. against gram-negative bacteria that cause uroinfections in pregnant women. Bulletin of Biotechnology and Physicochemical Biology named after Yu. A. Ovchinnikov, 2022, vol. 18, no. 3, pp. 63–69. (In Russian)

Nagoor Meeran M. F., Javed H., Al Taee H., Azimullah S., Ojha S. K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Frontiers in Pharmacology, 2017, vol. 8, art. 380. https://doi.org/10.3389/fphar.2017.00380.

Sadgrove N. J., Padilla-Gonzalez G. F., Leuner O., Melnikovova I., Fernandez-Cusimamani E. Pharmacology of natural volatiles and essential oils in food, therapy, and disease prophylaxis. Frontiers in Pharmacology, 2021, vol. 12, art. 740302. https://doi.org/10.3389/fphar.2021.74030.

Published

2023-09-29

How to Cite

Shapoval, O., Sheremetyeva, A., Durnova , N. ., Mukhamadiev, N. ., Rabbimova , G. ., & Nazirbekov, M. (2023). Screening assessment of antibacterial activity of Thymus serpyllum L., Thymus marsсhallianus Willd. and Pimpinella anisum L. essential oils against uropathogens, isolated from pregnant women. Vestnik of Saint Petersburg University. Medicine, 18(2), 167–175. https://doi.org/10.21638/spbu11.2023.205

Issue

Section

Pathological physiology