Influence of antimicrobial substances of plant origin on the sensitivity of bacterial biofilm to antimicrobial drugs

Authors

  • Oksana Rybalchenko St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Olga Orlova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Maria Netesa Institute of Experimental Medicine, 2, ul. Akademika Pavlova, St. Petersburg, 197376, Russian Federation
  • Valentina Kapustina St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2023.206

Abstract

The widespread antibiotic resistance is associated with the formation of special forms of microbial communities — bacterial biofilms with increased resistance to the impact of various physicochemical factors, including antimicrobial drugs. In this regard, the investigation of antibacterial agents, including herbal preparations that could affect bacterial biofilms, seems to be of current interest. The aim of this work was to identify antibacterial substances of plant origin that can most effectively affect bacterial biofilms. The effect of antibacterial decoctions of lingonberry, sage, and chamomile plants on the sensitivity of bacteria to antimicrobial drugs was assessed. The susceptibility of bacteria to antimicrobial drugs, when combined with
herbal decoctions, was determined by the disk-diffusion method. The morphophysiological properties of biofilms were illustrated by light and scanning electron microscopy. The ability of lingonberry, sage, and chamomile decoctions to increase the sensitivity of bacteria to antimicrobial drugs of predominantly bactericidal pharmacological action was revealed. Decoctions of medicinal plants prevented the formation of complete bacterial biofilms. The obtained results indicate the antibiofilm activity of lingonberry, chamomile and sage decoctions, which contribute to a decrease in the level of antibiotic resistance of bacteria and
a decrease in the load during antimicrobial therap.

Keywords:

antibiotic resistance, antimicrobial drugs, bacterial biofilms, herbal decoctions

Downloads

Download data is not yet available.
 

References

Литература

Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. Microbial biofilms // Annu. Rev. Microbiol. 1995. Vol. 49. P. 711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431.

Рыбальченко О. В., Бондаренко В. М., Добрица В. П. Атлас ультраструктуры микробиоты кишечника человека. СПб.: ИИЦ ВМА, 2008. 112 с.

Flemming H. C., Wingender J. The biofilm matrix // Nat. Rev. Microbiol. 2010. Vol. 8 (9). P. 623–633.https://doi.org/10.1038/nrmicro2415.

Chen M., Liu H., Wang R. Dynamical behaviors of quorum sensing network mediated by combinatorial perturbation // Math. Biosci. Eng. 2022. Vol. 19 (5). P. 4812–4840. https://doi.org/10.3934/mbe.2022225.

Parrino B., Schillaci D., Carnevale I., Giovannetti E., Diana P., Cirrincione G., Cascioferro S. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance // Eur. J. Med. Chem.2019. Vol. 161. P. 154–178. https://doi.org/10.1016/j.ejmech.2018.10.036.

Olsen I. Biofilm-specific antibiotic tolerance and resistance // Eur. J. Clin. Microbiol. Infect. Dis. 2015.Vol. 34 (5). P. 877–886. https://doi.org/10.1007/s10096-015-2323-z.

Sharma D., Misba L., Khan A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities // Antimicrob. Resist. Infect. Control. 2019. Vol. 8 (76). P. 1–10.

Tan S. Y. Y., Chua S. L., Chen Y., Rice S. A., Kjelleberg S., Nielsen T. E., Yang L., Givskov M. Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a naturalderivative database // Antimicrob. Agents Chemother. 2013. Vol. 57 (11). P. 5629–5641. https://doi.org/10.1128/AAC. 00955-13.

Рыбальченко О. В., Эрман М. В., Орлова О. Г., Первунина Т. М., Капустина В. В., Парийская Е. Н. Подавление биопленок условно патогенных бактерий на мочевых катетерах // Журнал микробиологии, эпидемиологии и иммунобиологии. 2017. № 3. C. 3–11.

Kumar S., Pandey A. K. Chemistry and Biological Activities of Flavonoids: An Overview // Scientific World Journal. 2013. Vol. 2013. Article ID 162750. https://doi.org/10.1155/2013/162750.

Evans S. M., Cowan M. M. Plant products as antimicrobial agents // Cosmet. Drug. Microbiol. 2016. Vol. 12 (4). P. 205–231. https://doi.org/10.3109/9781420019919-17.

Vasconcelos M. A., Arruda F. V. S., Carneiro V. A., Silva H. C., Nascimento K. S., Sampaio A. H., Cavada B., Teixeira E. H., Henriques M., Pereira M. O. Effect of algae and plant lectins on planktonic growth and biofilm formation in clinically relevant bacteria and yeasts // Biomed. Res. Int. 2014.Vol. 2014. Article ID 365272. https://doi.org/10.1155/2014/365272.

Song Y. J., Yu H. H., Kim Y. J., Lee N. K., Paik H. D. Anti-biofilm activity of grapefruit seed extract against staphylococcus aureus and Escherichia coli // J. Microbiol. Biotechnol. 2019. Vol. 29 (8). P. 1177–1183.https://doi.org/10.4014/JMB.1905.05022.

Holzapfel W., Arini A., Aeschbacher M., Coppolecchia R., Pot B. Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics // Benef. Microbes. 2018. Vol. 9 (3).P. 375–388. https://doi.org/10.3920/BM2017.0148.

Wang Y., Shi J., Tang L., Zhang Y., Zhang Y., Wang X., Zhang X. Evaluation of Rpf protein of Micrococcus luteus for cultivation of soil actinobacteria // Syst. Appl. Microbiol. 2021. Vol. 44 (5). P. 126234.https://doi.org/10.1016/j.syapm.2021.126234.

Kokubu E., Kinoshita E., Ishihara K. Inhibitory Effects of Lingonberry Extract on Oral Streptococcal Biofilm Formation and Bioactivity // Bull. Tokyo Dent. Coll. 2019. Vol. 60 (1). P. 1–9. https://doi.org/10.2209/tdcpublication.2018-0007.

O’Toole G. A. Microtiter dish biofilm formation assay // Journal of visualized experiments: JoVE. 2011. Vol. 47. P. 2437. https://doi.org/10.3791/2437.


References

Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. Microbial biofilms. Annu. Rev. Microbiol., 1995, vol. 49, pp. 711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431.

Rybalchenko O. V., Bondarenko V. M., Dobritsa V. P. Atlas of the ultrastructure of the human intestinal microbiota. St. Petersburg, IIC VMA Publ., 2008, 112 p. (In Russian)

Flemming H. C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol., 2010, vol. 8 (9), pp. 623–633.https://doi.org/10.1038/nrmicro2415.

Chen M., Liu H., Wang R. Dynamical behaviors of quorum sensing network mediated by combinatorial perturbation. Math. Biosci. Eng., 2022, vol. 19 (5), pp. 4812–4840. https://doi.org/10.3934/ mbe.2022225.

Parrino B., Schillaci D., Carnevale I., Giovannetti E., Diana P., Cirrincione G., Cascioferro S. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur. J. Med. Chem.,2019, vol. 161, pp. 154–178. https://doi.org/10.1016/j.ejmech.2018.10.036.

Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis., 2015,vol. 34 (5), pp. 877–886. https://doi.org/10.1007/s10096-015-2323-z.

Sharma D., Misba L., Khan A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control., 2019, vol. 8 (76), pp. 1–10.

Tan S. Y. Y., Chua S. L., Chen Y., Rice S. A., Kjelleberg S., Nielsen T. E., Yang L., Givskov M. Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. Antimicrobial Agents Chemother.,2013, vol. 57 (11), pp. 5629–5641. https://doi.org/10.1128/AAC. 00955-13.

Rybalchenko O. V., Erman M. V., Orlova O. G., Pervunina T. M., Kapustina V. V., Pariyskaya E. N.Suppression of biofilms of opportunistic bacteria on urinary catheters. Zh. Mikrobiol., 2017, no. 3, pp. 3–11. (In Russian)

Kumar S., Pandey A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Scientific World Journal, 2013, vol. 2013, article ID 162750. https://doi.org/10.1155/2013/162750.

Evans S. M., Cowan M. M. Plant products as antimicrobial agents. Cosmetic Drug Microbiol., 2016,vol. 12 (4), pp. 205–231. https://doi.org/10.3109/9781420019919-17.

Vasconcelos M. A., Arruda F. V. S., Carneiro V. A., Silva H. C., Nascimento K. S., Sampaio A. H., Cavada B., Teixeira E. H., Henriques M., Pereira M. O. Effect of algae and plant lectins on planktonic

growth and biofilm formation in clinically relevant bacteria and yeasts. Biomed. Res. Int., 2014,vol. 2014, article ID 365272. https://doi.org/10.1155/2014/365272.

Song Y. J., Yu H. H., Kim Y. J., Lee N. K., Paik H. D. Anti-biofilm activity of grapefruit seed extract against staphylococcus aureus and Escherichia coli. J. Microbiol. Biotechnol., 2019, vol. 29 (8), pp. 1177–1183. https://doi.org/10.4014/JMB.1905.05022.

Holzapfel W., Arini A., Aeschbacher M., Coppolecchia R., Pot B. Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics. Benef. Microbes., 2018, vol. 9 (3),pp. 375–388. https://doi.org/10.3920/BM2017.0148.

Wang Y., Shi J., Tang L., Zhang Y., Zhang Y., Wang X., Zhang X. Evaluation of Rpf protein of Micrococcus luteus for cultivation of soil actinobacteria. Syst. Appl. Microbiol., 2021, vol. 44 (5), p. 126234.https://doi.org/10.1016/j.syapm.2021.126234.

Kokubu E., Kinoshita E., Ishihara K. Inhibitory Effects of Lingonberry Extract on Oral Streptococcal Biofilm Formation and Bioactivity. Bull Tokyo Dent Coll., 2019, vol. 60 (1), pp. 1–9. https://doi.org/10.2209/tdcpublication.2018-0007.

O’Toole G. A. Microtiter dish biofilm formation assay. Journal of visualized experiments: JoVE, 2011,vol. 47, p. 2437. https://doi.org/10.3791/2437.

Published

2023-09-29

How to Cite

Rybalchenko, O., Orlova, . O., Netesa , M. ., & Kapustina, V. (2023). Influence of antimicrobial substances of plant origin on the sensitivity of bacterial biofilm to antimicrobial drugs. Vestnik of Saint Petersburg University. Medicine, 18(2), 176–191. https://doi.org/10.21638/spbu11.2023.206

Issue

Section

Microbiology