Application of cellular and artificial membranes in nanomedicine

Авторы

  • Михаил Галкин First Pavlov State Medical University of St. Peterburg, 6–8, ul. L’va Tolstogo, St. Petersburg, 197022, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2020.407

Аннотация

The use of nanoparticles in treatment and diagnostics of a number of disorders is becoming more and more popular. Further investigations are needed for improving the specificity of nanoparticle action, precisely targeted drug delivery, decreasing opsonization of nanoparticles by macrophages. Numerous ways of nanoparticle surface modification have been successfully tested for increasing their therapeutic potential and reducing possible side effects. Nanoparticle encapsulation using plasma membranes of red blood cells as well as other cell types has been recently introduced. This field of translational medicine substantially expands opportunities for nanoparticle application in clinical diagnostics and therapy of cancer, cardiovascular diseases, in vaccine development etc. This review focuses on ways, advantages and disadvantages of using cellular membranes in nanomedicine. Application of artificial lipid membranes
in nanoparticles encapsulation is proposed.

Ключевые слова:

nanoparticles, cell membranes, liposomes

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки


References

Gao W., Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. Journal of Drug Targeting, 2015, vol. 23, no. 7–8, pp. 619–626.

Murthy S. K. Nanoparticles in modern medicine: state of the art and future challenges. International Journal of Nanomedicine, 2007, vol. 2, no. 2, pp. 129–141.

Zhai Y., Su J., Ran W., Zhang P., Yin Q., Zhang Z., Yu H., Li Y. Preparation and application of cellmembrane-camouflaged nanoparticles. Theranostics, 2017, vol. 7, no. 10, pp. 2575–2592.

Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R. K. Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research,1995, vol. 55, pp. 3752–3756.

Hu C.-M. J., Fang R. H., Wang K.-C., Luk B. T., Thamphiwatana S., Dehaini D., Nguyen P., Angsantikul P., Wen C. H., Ashley V., Kroll A. V., Carpenter C., Ramesh M., Qu V., Patel S., Zhu J., Shi W., Hofman F. M., Chen T. C., Gao W., Zhang K., Chien S., Zhang L. Nanoparticle biointerfacing via platelet membrane cloaking. Nature, 2015, vol. 526, no. 7571, pp. 118–121.

Kroll A., Fang R. H., Zhang L. Biointerfacing and Applications of Cell Membrane-Coated Nanoparticles.Bioconjugate Chemistry, 2016, vol. 28, no. 1, pp. 23–32.

Toth P. P. The “Good Cholesterol”. High-Density Lipoprotein. Circulation, 2005, vol. 111, no. 5,pp. e89-e91.

Cormode D. P., Skajaa T., van Schooneveld M. M., Koole R., Jarzyna P., Lobatto M. E., Calcagno C., Barazza A., Gordon R. E., Zanzonico P., Fisher E. A., Fayad Z. A., Mulder W. J. M. Nanocrystal core high-density lipoproteins: A multimodality contrast agent platform. Nano Letters, 2008, vol. 8, no. 11, pp. 3715–3723.

Gao W., Hu C.-M. J., Fang R. H., Zhang L. Liposome-like nanostructures for drug delivery. Journal of Materials Chemistry B, 2013, vol. 1, pp. 6569–6585.

Gao W., Hu C.-M. J., Fang R. H., Luk B. T., Su J., Zhang L. Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. Advanced Materials, 2013, vol. 25, no. 26, 3549–3553.

Fang R. H., Hu Che-Ming J., Luk B. T., Gao W., Copp J. A., Tai Y., O’Connor D. E., Zhang L. Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters, 2014, vol. 14, pp. 2181−2188.

Tsai R. K., Rodriguez P. L., Discher D. E. Self inhibition of phagocytosis: the affinity of ‘marker of self ’CD47 for SIRPalpha dictates potency of inhibition but only at low expression levels. Blood Cells, Molecules & Diseases, 2010, vol. 45, no. 1, pp. 67–74.

Oldenborg P. A., Zheleznyak A., Fang Y. F., Lagenaur C. F., Gresham H. D., Lindberg F. P. Role of CD47 as a marker of self on red blood cells. Science, 2000, vol. 288, no. 5473, pp. 2051–2054.

Schonermark S., Rauterberg E. W., Shin M. L., Loke S., Roelcke D., Hansch G. M. Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor.The Journal of Immunology, 1986, vol. 136, no. 5, pp. 1772–1776.

Zalman L. S., Wood L. M, Mullereberhard H. J. Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proceedings of the National Academy of Sciences USA, 1986, vol. 83, no. 18, pp. 6975–6979.

Kim D. D., Miwa T., Kimura Y., Schwendener R. A., van Lookeren Campagne M., Song W. C. Deficiency of decay-accelerating factor and complement receptor 1-related gene/protein y on murine platelets leads to complement-dependent clearance by the macrophage phagocytic receptor CRIg. Blood, 2008, vol. 112, no. 4, pp. 1109–1119.

Durocher J. R, Payne R. C., Conrad M. E. Role of sialic acid in erythrocyte survival. Blood, 1975, vol. 45, no. 1, pp. 11–20.

Angsantikul P., Thamphiwatana S., Gao W., Zhang L. Cell Membrane-Coated Nanoparticles as an Emerging Antibacterial Vaccine Platform. Vaccines, 2015, vol. 3, pp. 814-828.

Chalmeau J., Monina N., Shin J., Vieu C., Noireaux V. α-Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression. Biochimica Biophysica Acta., 2011, vol. 1808, no. 1,pp. 271–278.

Forsberg A., Puu G. Kinetics for the inhibition of acetylcholinesterase from the electric eel by some organophosphates and carbamates. European Journal of Biochemistry, 1984, vol. 140, no. 1, pp. 153–156.

Pang Z., Hu C.-M. J., Fang R. H., Luk B. T., Gao W., Wang F., Chuluun E., Angsantikul P., Thamphiwatana S., Lu W., Jiang X., Zhang L. Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers. ACS Nano, 2015, vol. 9, no. 6, pp. 6450–6458.

Wei X., Gao J., Fang R. H., Luk B. T., Kroll A. V., Dehaini D., Zhou J., Kim H. W., Gao W., Lu W., Zhang L. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials, 2016, vol. 111, pp. 116–123.

Gay L. G., Felding-Habermann B. Contribution of platelets to tumour metastasis. Nature reviews. Cancer,2011, vol. 11, no. 2, pp. 123–134.

Xu L., Gao F., Fan F., Yang L. Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage.Biomaterials, 2018, vol. 159, pp. 59–67.

Fang R. H., Hu C.-M. J., Luk B. T., Gao W., Copp J. A., Tai Y., O’Connor D. E., Zhang L. Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters, 2014,vol. 14, no. 4, pp. 2181–2188.

Kantoff P. W., Higano C. S., Shore N. D., Berger E. R., Small E. J., Penson D. F., Redfern C. H., Ferrari A. C., Dreicer R., Sims R. B., Xu Y., Frohlich M. W., Schellhammer P. F., IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England Journal of Medicine,2010, vol. 363, no. 5, pp. 411−422.

Dehaini D., Wei X., Fang R. H., Masson S., Angsantikul P., Luk B. T., Zhang Y., Ying M., Jiang Y., Kroll A. V., Gao W., Zhang L. Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Advanced Materials, 2017, vol. 29, no. 16.

Li R., He Y., Zhang S., Qin J., Wang J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharmaceutica Sinica B, 2018, vol. 8, no. 1, pp.14–22.

Rigaud J.-L., Lévy D. Reconstitution of Membrane Proteins into Liposomes. Methods in Enzymology,2003, vol. 372, pp. 65–86.

Biner O., Schick T., Muller Y., von Ballmoos C. Delivery of membrane proteins into small and giant unilamellar vesicles by charge-mediated fusion. FEBS Letters, 2016, vol. 590, no. 14, pp. 2051–2062.

Ishmukhametov R. R., Russell A. N., Berry R. M. A modular platform for one-step assembly of multicomponent membrane systems by fusion of charged proteoliposomes. Nature Communications, 2016, vol. 7, no. 13025. https://doi.org/10.1038/ncomms13025

Biner O., Schick T., Ganguin A. A., von Ballmoos C. Towards a Synthetic Mitochondrion. Chimia,2018, vol. 72, no. 5, pp. 291–296.

Galkin M. A., Russell A. N., Vik S. B., Berry R. M., Ishmukhametov R. R. Detergent-free Ultrafast Reconstitution of Membrane Proteins into Lipid Bilayers Using Fusogenic Complementarycharged Proteoliposomes.Journal of Visualized Experiments, 2018, vol. 134, no. 56909. https://doi.org/10.3791/56909

Загрузки

Опубликован

25.01.2021

Как цитировать

Галкин, М. . (2021). Application of cellular and artificial membranes in nanomedicine. Вестник Санкт-Петербургского университета. Медицина, 15(4), 290–299. https://doi.org/10.21638/spbu11.2020.407

Выпуск

Раздел

Патологическая физиология