Purinergic regulation: From a risky hypothesis to a triumphant theory

Авторы

  • Мохаммад Камран Сарканди Биологический факультет, Санкт-Петербургский государственный университет https://orcid.org/0000-0001-6147-8380
  • Наталья Серебряная St. Petersburg State University, 7–9, Universitetskaya nab, St. Petersburg, 199034, Russian Federation ; Institute of Experimental Medicine, 12, ul. Academika Pavlova, St. Petersburg, 197376, Russian Federation

DOI:

https://doi.org/10.21638/spbu11.2021.306

Аннотация

With the discovery of the ATP structure in 1929, significant progress was made in understanding the role of nucleosides and nucleotides in the body. One of the most important breakthroughs is associated with the determination of the function of an autacoid in ATP, a participant in purinergic signal transmission. For the first time, this function of ATP was pointed out by Professor Geoffrey Burnstock in 1972. Purinergic signaling activators are extracellular nucleotides including ATP, ADP, UTP, UDP, and adenosine nucleoside. The purinergic signaling pathway begins with the synthesis and intracellular accumulation of nucleotides, and then their release from the cell under various physiological and pathological conditions. In the extracellular spaces, nucleotides are hydrolyzed by various enzymes with the removal of phosphate groups, which leads to the appearance of various regulatory molecules that interact with P1 and P2 purinergic receptors. This ligand-receptor interaction changes the functional state of the target cell. In turn, the expression of purinergic receptors changes depending on the functional state of the cell. The participation of purinergic regulation in the development of many diseases indicates that by changing the concentration of signaling molecules, it is possible to change the course of pathological processes, in particular the activity of inflammation and the direction of immune responses. This article provides a brief review of the literature on the structure of nucleotide and nucleoside autacoids, enzymes involved in their metabolism,
specific purinergic receptors.

Ключевые слова:

purinergic signaling pathway, Adenosine, ATP, Purinergic regulation, P1 and P2 receptors

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Abbracchio M.P., Jacobson K.A., Müller C.E., Zimmermann H., Professor Dr. Geoffrey Burnstock (1929–2020)., Springer., 2020 , p. 137–149. https://doi.org/10.1007/s11302-020-09709-y.

Dale H., Pharmacology and nerve-endings., 1934, SAGE Publications: PMCID: PMC2446347; PMID: 20778740. p. 1161–1163.

Burnstock G., Purinergic nerves. PHARMACOL. REV., 1972, vol. 24, p. 509-581. (PMID: 4404211).

Evans R.J., Derkach V., Surprenant A., ATP mediates fast synaptic transmission in mammalian neurons., Nature., 1992, vol. 357(6378), p. 503-505. https://doi.org/10.1038/357503a0.

Zimmermann H., Ectonucleoside triphosphate diphosphohydrolases and ecto-5′-nucleotidase in purinergic signaling: how the field developed and where we are now., Purinergic Signalling., 2020, p. 1-9. https://doi.org/10.1007/s11302-020-09755-6.

Zimmermann H., History of ectonucleotidases and their role in purinergic signaling., Biochemical Pharmacology., 2020, vol. 187, p. 114322. https://doi.org/10.1016/j.bcp.2020.114322.

Giuliani A.L., Sarti A.C., Di Virgilio F., Extracellular nucleotides and nucleosides as signalling molecules., Immunology letters., 2019, vol. 205, p. 16-24. https://doi.org/10.1016/j.imlet.2018.11.006.

Zhou Y., Schneider D.J., Blackburn M.R., Adenosine signaling and the regulation of chronic lung disease., Pharmacology & therapeutics., 2009, vol. 123(1): p. 105-116. https://doi.org/10.1016/j.pharmthera.2009.04.003.

Burnstock G., Introduction to Purinergic Signaling, in Purinergic Signaling., Springer., 2020, p. 1-15. DOI: 10.1007/978-1-4939-9717-6_1.

Sitkovsky M.V. Ohta A., The ‘danger’sensors that STOP the immune response: the A2 adenosine receptors?,. Trends in immunology., 2005, vol. 26(6), p. 299-304. https://doi.org/10.1016/j.it.2005.04.004.

Burnstock G., Purinergic signalling: therapeutic developments., Frontiers in pharmacology., 2017, vol. 8, p. 661. https://doi.org/10.3389/fphar.2017.00661.

Zimmermann H., Extracellular ATP and other nucleotides—ubiquitous triggers of intercellular messenger release., Purinergic signalling., 2016, vol. 12(1), p. 25-57. https://doi.org/10.1007/s11302-015-9483-2.

Idzko M., Ferrari D., Eltzschig H.K., Nucleotide signalling during inflammation., Nature., 2014, vol. 509(7500), p. 310-317. https://doi.org/10.1038/nature13085.

Robson S.C., Sévigny J., Zimmermann H., The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance., Purinergic signalling,. 2006, vol. 2(2), p. 409–430. DOI 10.1007/s11302-006-9003-5.

Knowles A.F., The GDA1_CD39 superfamily: NTPDases with diverse functions., Purinergic signalling,. 2011, vol. 7(1), p. 21-45. https://doi.org/10.1007/s11302-010-9214-7.

Kukulski F., Lévesque S., Lavoie E., Lecka J., Bigonnesse F., Knowles A., Robson S., Kirley T., Sévigny J., Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8., Purinergic signalling., 2005, vol. 1(2), p. 193-204. DOI:10.1007/s11302-005-6217-x.

Deaglio S. Robson S.C., Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity, in Advances in pharmacology., Elsevier., 2011, p. 301-332. https://doi.org/10.1016/B978-0-12-385526-8.00010-2.

Kishore B.K., Robson S.C., Dwyer K.M., CD39-adenosinergic axis in renal pathophysiology and therapeutics., Purinergic signalling., 2018, vol. 14(2), p. 109-120. https://doi.org/10.1007/s11302-017-9596-x.

Namasivayam V., Lee S.-Y., Mueller C.E., The promiscuous ectonucleotidase NPP1: molecular insights into substrate binding and hydrolysis., Biochimica et Biophysica Acta (BBA)-General Subjects., 2017, vol. 1861(3), p. 603-614. https://doi.org/10.1016/j.bbagen.2016.12.019.

Horenstein A.L., Chillemi A., Zaccarello G., Bruzzone S., Quarona V., Zito A., Serra S., Malavasi F., A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes., Oncoimmunology., 2013, vol. 2(9), p. e26246. https://doi.org/10.4161/onci.26246.

Hessle L., Johnson K.A., Anderson H.C., Narisawa S., Sali A., Goding J.W., Terkeltaub R., Millán J.L., Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization., Proceedings of the National Academy of Sciences., 2002, vol. 99(14): p. 9445-9449. https://doi.org/10.1073/pnas.142063399.

Sharma M., Thode T., Weston A., Kaadige M.R., HematologicalDevelopment of Enpp1 Inhibitors as a Strategy to Activate Stimulator of Interferon Genes (STING) in Cancers and Other Diseases., International Journal of Cell Science & Molecular Biology., 2018, vol. 5(1): p. 24-28. DOI: 10.19080/IJCSMB.2018.04.555655.

Tokumura A., Majima E., Kariya Y., Tominaga K., Kogure K., Yasuda K., Fukuzawa K., Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase., Journal of Biological Chemistry., 2002, vol. 277(42), p. 39436-39442. https://doi.org/10.1074/jbc.M205623200.

Stagg J. Smyth M., Extracellular adenosine triphosphate and adenosine in cancer., Oncogene., 2010, vol. 29(39), p. 5346-5358. https://doi.org/10.1038/onc.2010.292.

Bono Merino M.R., Fernández D., Flores Santibáñez F., Rosemblatt Silber M.C., Sauma Mahaluf D., CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression., 2015, vol. 589(22): p. 3454-3460. https://doi.org/10.1016/j.febslet.2015.07.027

Antonioli L., Yegutkin G.G., Pacher P., Blandizzi C., Haskó G., Anti-CD73 in cancer immunotherapy: awakening new opportunities., Trends in cancer., 2016, vol. 2(2), p. 95-109. https://doi.org/10.1016/j.trecan.2016.01.003.

Eckle T., Koeppen M., Eltzschig H.K., Role of extracellular adenosine in acute lung injury., Physiology., 2009, vol. 24(5), p. 298-306. https://doi.org/10.1152/physiol.00022.2009.

Antonioli L., Csóka B., Fornai M., Colucci R., Kókai E., Blandizzi C., Haskó G., Adenosine and inflammation: what's new on the horizon?, Drug Discovery Today., 2014, vol. 19(8), p. 1051-1068. https://doi.org/10.1016/j.drudis.2014.02.010.

Moss D.W., Alkaline phosphatase isoenzymes., Clinical chemistry., 1982, vol. 28(10), p. 2007-2016. https://doi.org/10.1093/clinchem/28.10.2007.

Poupon R., Liver alkaline phosphatase: a missing link between choleresis and biliary inflammation., Hepatology., 2015, vol. 61(6), p. 2080-2090. https://doi.org/10.1002/hep.27715.

Tuin A., Poelstra K., de Jager-Krikken A., Bok L., Raaben W., Velders M.P., Dijkstra G., Role of alkaline phosphatase in colitis in man and rats., Gut,. 2009, vol. 58(3), p. 379-387. http://dx.doi.org/10.1136/gut.2007.128868.

Peters E., Geraci S., Heemskerk S., Wilmer M., Bilos A., Kraenzlin B., Gretz N., Pickkers P., Masereeuw R., Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate., British journal of pharmacology., 2015, vol. 172(20), p. 4932-4945. https://doi.org/10.1111/bph.13261.

Pike A.F., Kramer N.I., Blaauboer B.J., Seinen W., Brands R., A novel hypothesis for an alkaline phosphatase ‘rescue’mechanism in the hepatic acute phase immune response., Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease., 2013, vol. 1832(12), p. 2044-2056. https://doi.org/10.1016/j.bbadis.2013.07.016.

Koyama I., Matsunaga T., Harada T., Hokari S., Komoda T., Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation., Clinical biochemistry., 2002, vol. 35(6), p. 455-461. https://doi.org/10.1016/S0009-9120(02)00330-2.

Haskó G., Sitkovsky M.V., Szabo C., Immunomodulatory and neuroprotective effects of inosine., Trends in pharmacological sciences., 2004, vol. 25(3), p. 152-157. https://doi.org/10.1016/j.tips.2004.01.006.

Veres G., Radovits T., Seres L., Horkay F., Karck M., Szabó G., Effects of inosine on reperfusion injury after cardiopulmonary bypass., Journal of cardiothoracic surgery., 2010, vol. 5(1), p. 1-6. https://doi.org/10.1186/1749-8090-5-106.

Antonioli L., Colucci R., La Motta C., Tuccori M., Awwad O., Da Settimo F., Blandizzi C., Fornai M., Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders., Current drug targets., 2012, vol. 13(6), p. 842-862. https://doi.org/10.2174/138945012800564095.

Spychala J., Tumor-promoting functions of adenosine., Pharmacology & therapeutics., 2000, vol. 87(2-3), p. 161-173.https://doi.org/10.1016/S0163-7258(00)00053-X.

Desrosiers M.D., Cembrola K.M., Fakir M.J., Stephens L.A., Jama F.M., Shameli A., Mehal W.Z., Santamaria P., Shi Y., Adenosine deamination sustains dendritic cell activation in inflammation., The Journal of Immunology., 2007, vol. 179(3), p. 1884-1892. https://doi.org/10.4049/jimmunol.179.3.1884

Cristalli G., Costanzi S., Lambertucci C., Lupidi G., Vittori S., Volpini R., Camaioni E., Adenosine deaminase: functional implications and different classes of inhibitors., Medicinal research reviews., 2001, vol. 21(2), p. 105-128. https://doi.org/10.1002/1098-1128(200103)21:2

Honma Y., A novel therapeutic strategy against monocytic leukemia with deoxyadenosine analogs and adenosine deaminase inhibitors., Leukemia & lymphoma., 2001, vol. 42(5), p. 953-962. https://doi.org/10.3109/10428190109097714.

Zavialov A.V. Engström Å., Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity., Biochemical Journal., 2005, vol. 391(1), p. 51-57. https://doi.org/10.1042/BJ20050683.

Santisteban I., Arredondo-Vega F.X., Kelly S., Mary A., Fischer A., Hummell D.S., Lawton A., Sorensen R.U., Stiehm E.R., Uribe L., Novel splicing, missense, and deletion mutations in seven adenosine deaminase-deficient patients with late/delayed onset of combined immunodeficiency disease. Contribution of genotype to phenotype., The Journal of clinical investigation., 1993, vol. 92(5), p. 2291-2302. https://doi.org/10.1172/JCI116833.

Cohen A., Hirschhorn R., Horowitz S.D., Rubinstein A., Polmar S.H., Hong R., Martin D.W., Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency., Proceedings of the National Academy of Sciences., 1978, vol. 75(1), p. 472-476. https://doi.org/10.1073/pnas.75.1.472.

Göblyös A., IJzerman A.P., Allosteric modulation of adenosine receptors., Purinergic Signalling., 2009, vol. 5(1), p. 51-61.https://doi.org/10.1007/s11302-008-9105-3.

Sheth S., Brito R., Mukherjea D., Rybak L.P., Ramkumar V., Adenosine receptors: expression, function and regulation., International journal of molecular sciences., 2014, vol. 15(2): p. 2024-2052. https://doi.org/10.3390/ijms15022024.

Yuzlenko O., Kiec-Kononowicz K., Potent adenosine A1 and A2A receptors antagonists: recent developments., Current medicinal chemistry., 2006, vol. 13(30), p. 3609-3625. https://doi.org/10.2174/092986706779026093.

Polosa R., Blackburn M.R., Adenosine receptors as targets for therapeutic intervention in asthma and chronic obstructive pulmonary disease., Trends in pharmacological sciences., 2009, vol. 30(10), p. 528-535. https://doi.org/10.1016/j.tips.2009.07.005.

Dhalla A.K., Shryock J.C., Shreeniwas R., Belardinelli L., Pharmacology and therapeutic applications of A1 adenosine receptor ligands., Current topics in medicinal chemistry., 2003, vol. 3(4), p. 369-385. https://doi.org/10.2174/1568026033392246.

Burnstock G., The therapeutic potential of purinergic signalling., Biochemical pharmacology., 2018, vol. 151, p. 157-165. https://doi.org/10.1016/j.bcp.2017.07.016.

Fredholm B.B., Cunha R.A., Svenningsson P., Pharmacology of adenosine A2A receptors and therapeutic applications., Current topics in medicinal chemistry., 2003, vol. 3(4), p. 413-426. https://doi.org/10.2174/1568026033392200.

Ohta A., Sitkovsky M., The adenosinergic immunomodulatory drugs., Current opinion in pharmacology., 2009, vol. 9(4), p. 501-506. https://doi.org/10.1016/j.coph.2009.05.005.

Sachdeva S., Gupta M., Adenosine and its receptors as therapeutic targets: an overview., Saudi Pharmaceutical Journal., 2013, vol. 21(3), p. 245-253. https://doi.org/10.1016/j.jsps.2012.05.011.

Block E.T., Cronstein B.N., Interferon-gamma inhibits adenosine A2A receptor function in hepatic stellate cells by STAT1-mediated repression of adenylyl cyclase., International journal of interferon, cytokine and mediator research: IJIM., 2010, vol. 2010(2), p. 113–126. PMCID: PMC2995453;PMID: 21132069.

Ferrante C.J., Pinhal-Enfield G., Elson G., Cronstein B.N., Hasko G., Outram S., Leibovich S.J., The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling., Inflammation., 2013, vol. 36(4), p. 921-931. https://doi.org/10.1007/s10753-013-9621-3.

Cacciari B., Pastorin G., Bolcato C., Spalluto G., Bacilieri M., Moro S., A2B adenosine receptor antagonists: recent developments., Mini reviews in medicinal chemistry., 2005, vol. 5(12), p. 1053-1060. DOI: 10.2174/138955705774933374.

Baraldi P.G., Tabrizi M.A., Gessi S., Borea P.A., Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility., Chemical reviews., 2008, vol. 108(1), p. 238-263. https://doi.org/10.1021/cr0682195.

Poulsen S.A., Quinn R.J., Adenosine receptors: new opportunities for future drugs., Bioorganic & medicinal chemistry., 1998, vol. 6(6), p. 619-641. https://doi.org/10.1016/S0968-0896(98)00038-8.

Jung K.-Y., Kim S.-K., Gao Z.-G., Gross A.S., Melman N., Jacobson K.A., Kim Y.-C., Structure–activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists., Bioorganic & medicinal chemistry., 2004, vol. 12(3), p. 613-623. https://doi.org/10.1016/j.bmc.2003.10.041.

Baraldi P.G., Tabrizi M.A., Fruttarolo F., Bovero A., Avitabile B., Preti D., Romagnoli R., Merighi S., Gessi S., Varani K., Recent developments in the field of A3 adenosine receptor antagonists., Drug development research., 2003, vol. 58(4), p. 315-329. https://doi.org/10.1002/ddr.10167

Jacobson K.A., Müller C.E., Medicinal chemistry of adenosine, P2Y and P2X receptors., Neuropharmacology., 2016, vol. 104, p. 31-49. https://doi.org/10.1016/j.neuropharm.2015.12.001.

Jarvis M.F., Khakh B.S., ATP-gated P2X cation-channels., Neuropharmacology., 2009, vol. 56(1), p. 208-215. https://doi.org/10.1016/j.neuropharm.2008.06.067.

Abbracchio M.P., Burnstock G., Boeynaems J.-M., Barnard E.A., Boyer J.L., Kennedy C., Knight G.E., Fumagalli M., Gachet C., Jacobson K.A., International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy., Pharmacological reviews., 2006, vol. 58(3), p. 281-341. https://doi.org/10.1124/pr.58.3.3.

Dubyak G.R., Go it alone no more—P2X7 joins the society of heteromeric ATP-gated receptor channels., Molecular pharmacology., 2007, vol. 72(6), p. 1402-1405. https://doi.org/10.1124/mol.107.042077.

Erb L., Weisman G.A., Coupling of P2Y receptors to G proteins and other signaling pathways., Wiley Interdisciplinary Reviews: Membrane Transport and Signaling., 2012, vol. 1(6), p. 789-803. https://doi.org/10.1002/wmts.62.

Volonté C., Ambrosi N. D, Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters., The FEBS journal., 2009, vol. 276(2), p. 318-329. https://doi.org/10.1111/j.1742-4658.2008.06793.x.

Qiang Q., Manalo J.M., Sun H., Zhang Y., Song A., Wen A.Q., Wen Y.E., Chen C., Liu H., Cui Y., Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming., PLoS biology., 2021, vol. 19(6), p. e3001239. https://doi.org/10.1371/journal.pbio.3001239.

Layland J., Carrick D., Lee M., Oldroyd K., Berry C., Adenosine: physiology, pharmacology, and clinical applications., JACC: Cardiovascular Interventions., 2014, vol. 7(6), p. 581-591. http://dx.doi.org/10.1016/j.jcin.2014.02.009.

Verkhratsky A., Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to Geoff Burnstock inquisitive mind., Biochemical Pharmacology., 2020, vol. 187, p. 114261. https://doi.org/10.1016/j.bcp.2020.114261.

Balemans W., Vranckx L., Lounis N., Pop O., Guillemont J., Vergauwen K., Mol S., Gilissen R., Motte M., Lançois D., Novel antibiotics targeting respiratory ATP synthesis in Gram-positive pathogenic bacteria., Antimicrobial agents and chemotherapy., 2012, vol. 56(8), p. 4131-4139. https://doi.org/10.1128/AAC.00273-12.

Загрузки

Опубликован

30.09.2021

Как цитировать

Камран Сарканди, М., & Серебряная, Н. . (2021). Purinergic regulation: From a risky hypothesis to a triumphant theory. Вестник Санкт-Петербургского университета. Медицина, 16(3), 190– 202. https://doi.org/10.21638/spbu11.2021.306

Выпуск

Раздел

Патологическая физиология