ГИСТОЛОГИЯ

УДК 611.018:611-091

А. М. Константинова^{1,2}, И. Э. Белоусова^{1,3}, Д. Кацеровска⁴, М. Михал⁴, К. В. Шелехова¹, Д. В. Казаков⁴

МОРФОЛОГИЯ АНОГЕНИТАЛЬНЫХ МАММАРО-ПОДОБНЫХ ЖЕЛЕЗ

- ¹ Санкт-Петербургский клинический научно-практический центр специализированных видов медицинской помощи (онкологической), Российская Федерация 197758, Санкт-Петербург, пос. Песочный, Ленинградская ул., 68а, лит. А
- ² Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9
- ³ Военно-медицинская академия им. С. М. Кирова, Российская Федерация, 194044, Санкт-Петербург, ул. Академика Лебедева, 6
- ⁴ Карлский Университет в Праге, Чешская Республика, 30460, Пльзень, Аллея Свободы, 80

Данная статья посвящена нормальной анатомии и гистологии маммаро-подобных желез, которые являются нормальным анатомическим компонентом аногенитальной области и располагаются в бороздке между малой и большой половыми губами. Эти железы могут давать начало многочисленным доброкачественным и злокачественным опухолям, морфологически напоминающим аналогичные заболевания молочной железы. Они имеют промежуточное гистологическое строение между молочными и потовыми железами; их выводные протоки открываются прямо на поверхность эпидермиса. Эпителий протоков содержит клетки Токера. Библиогр. 55 назв. Ил. 4. Табл. 1.

Ключевые слова: аногенитальная область, маммаро-подобные железы, вульва, патология, гистология.

MORPHOLOGY OF ANOGENITAL MAMMARY-LIKE GLANDS

A. M. Konstantinova^{1,2}, I. E. Belousova^{1,3}, D. Kacerovska⁴, M. Michal⁴, K. V. Shelekhova¹, D. V. Kazakov⁴

- ¹ St. Petersburg Clinical Research and Practical center for specialized (oncological) care, 68a, Lit. A, Leningradskaya ul., pos. Pesochny, St. Petersburg, 197758, Russian Federation
- ² St Petersburg State University,
 - 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
- 3 S. M. Kirov Medical Military Academy, 6, ul. Akademika Lebedeva, St. Petersburg, 194044, Russian Federation
- ⁴ Charles University in Prague, 80, Alleia Svobody, Pilsen, 30460, Czech Republic

Mammary-like glands represent a normal constituent of the anogenital area, mainly located in the sulcus between the labia minora and majora. Benign and malignant lesions involving these glands manifest a striking similarity to their mammary counterparts. Discussed are their normal anatomy

[©] Санкт-Петербургский государственный университет, 2017

and histology. Mammary-like glands have features of mammary and sweat glands. Their excretory ducts open to the epidermal surface and contain Toker cells. Refs 55. Figs 4. Table 1.

Keywords: anogenital, mammary-like glands, vulva, pathology, histology.

Среди желез, локализующихся в коже человека, до 1990-х гг. столетия были известны сальные, эккринные, апокринные, ресничные железы Молля и мейбомиевы железы хряща век, а также церуминозные железы в области наружного слухового прохода [1]. Некоторые авторы считают, что молочные железы — это модифицированные апокринные железы [1].

Добавочная, или эктопическая, ткань молочной железы, являющаяся, как принято считать, производной «молочных гребней», располагающихся по ходу молочной линии, может встречаться в аногенитальной области и быть источником многих патологических состояний, в том числе опухолей, морфологически напоминающих аналогичные заболевания молочной железы.

В специальной литературе первое клиническое описание молочной железы в области вульвы появилось в 1872 г. Е. Хартунг наблюдал лактирующую молочную железу, которая представляла собой точную, но уменьшенную до размера гусиного яйца копию обычной молочной железы в области большой половой губы [2]. Через 30 лет последовало описание похожего случая с двусторонним симметричным расположением молочных желез [3]. Эти состояния были расценены как проявления полимастии — феномена, объяснявшегося атавистической теорией Дарвина [4]. Поскольку молочная железа китообразных в норме располагается в области вульвы, считалось, что в процессе эволюции данный атавизм может возникнуть и у человека [5, 6].

Данные предположения вскоре были дополнены онтогенетической теорией молочных гребней, развивающихся вдоль молочной линии, соединяющей подмышечную и паховую области, у эмбрионов не только человека, но и других млекопитающих [5]. В норме большая часть этих гребней должна исчезать в процессе развития эмбриона, оставляя только парные грудные молочные железы. Предполагалось, что в отдельных случаях один или более рудиментов могли сохраняться и быть источником развития дополнительных молочных желез [5].

В 1926 г. впервые был описан случай опухолеподобного образования в области большой половой губы, гистологически представляющего собой лактирующую железистую ткань молочной железы [7]. С этого момента по настоящее время было опубликовано несколько аналогичных случаев лактирующей ткани молочной железы в области вульвы, в пяти из них процесс был билатеральный [8–19]. Эти рудиментарные образования рассматривались как источники некоторых опухолей и опухолеподобных состояний аногенитальной области, морфологически сходных с процессами в молочной железе. К ним относятся описанные в литературе фиброкистозные изменения аберрантной ткани молочной железы в области вульвы [7, 12, 20], фиброаденомы [3, 21–23], случай папиллярной гидраденомы [24] и несколько случаев первичной карциномы вульвы [25].

В 1971 г. Х. Вудворт и соавторы, проводя клинико-патологическое исследование папиллярной гидраденомы — опухоли, как известно, практически исключительно поражающей аногенитальную область у женщин, — обратил внимание на железы, располагающиеся в непосредственной близости от опухоли и имеющие промежу-

83

точные морфологические черты между эккринными и апокринными железами [26]. Он подтвердил их наличие в коже аногенитальной области на большом количестве аутопсиийного материала, но не провел более детального исследования их строения и функции. В нескольких предшествующих работах, касающихся патологии аногенитальной области, было отмечено наличие «неапокринных желез» [27] или желез, «которые нельзя было отнести ни к эккринным, ни к апокринным» [28].

В 1991 г. С. Ван дер Путте с целью изучения возможной взаимосвязи между этими железами и папиллярной гидраденомой провел исследование микроскопической анатомии аногенитальной области, в котором он подробно описал новую разновидность кожных желез, имеющих специфическое гистологическое строение, отличающее их от эккринных, апокринных и молочных желез, и в то же время имеющих с ними общие черты [29]. Первоначально они были названы «аногенитальными потовыми железами» из-за их общих черт с эккринными и апокринными потовыми железами [29], но при дальнейшем изучении было выявлено значительное сходство их гистологического строения со строением молочных желез, и термин «аногенитальные маммаро-подобные» железы вульвы оказался более предпочтительным [3].

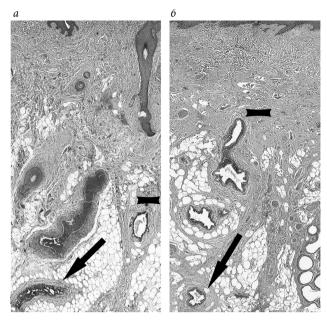
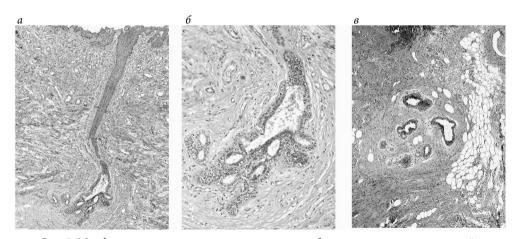
Как было показано в исследовании [29], маммаро-подобные железы (МПЖ) являются нормальным компонентом аногенитальной области и локализуются у женщин преимущественно в складке между малой и большой половыми губами, в меньшей концентрации — в области промежности и вокруг анального отверстия, у мужчин — в венечной борозде, на вентральной стороне полового члена и в перианальной области.

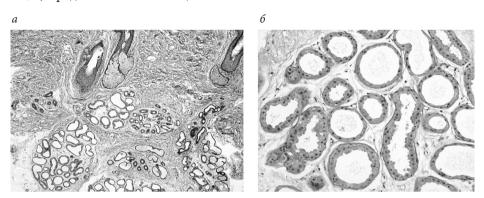
Основными чертами МПЖ являются их способность формировать лобулярные структуры, напоминающие молочные железы, промежуточное гистологическое строение между эккринными и апокринными железами и наличие выраженной фиброзной стромы, которая отсутствует у эккринных и апокринных желез [29–31].

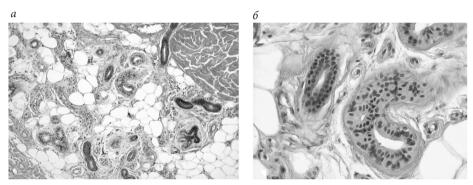
Помимо проведенного обзора литературы, для более детального изучения строения МПЖ нами было отобрано из архивов кафедры патологии Карлского университета в Праге (Медицинский факультет в г. Пльзень), лаборатории патологической анатомии НИИ онкологии им. Н. Н. Петрова (г. Санкт-Петербург) и Санкт-Петербургского клинического научно-практического центра специализированных видов медицинской помощи (онкологической) и проанализировано более 1000 случаев различных новообразований аногенитальной области (среднее число образцов — 7 (от 1 до 59)).

Также были изучены МПЖ (по 4 образца в каждом случае), локализующиеся в складке между большой и малой половыми губами, у 15 женщин (средний возраст составил 67,3 года), умерших от соматической патологии.

МПЖ были обнаружены в 24,3 % случаев. Было выявлено, что строение МПЖ может варьировать от широких, слегка извитых тубулярных структур, иногда формирующих ответвления и «дивертикулы» [29], до более сложных форм, в которых извитые структуры также образуют многочисленные ответвления с формированием долек, напоминающих дольки молочной железы (рис. 1, 2, a, b). Секреторный эпителий состоит из базального слоя миоэпителиальных клеток и внутреннего слоя, из призматических клеток с признаками апикальной секреции или из клеток.


Рис. 1. Выводной проток (■■) и секреторный отдел (■■) аногенитальных маммаро-подобных желез, представляющих собой извитую структуру с ответвлениями (а) или тубулярную структуру (б) при увеличении в 10 раз. Вокруг желез имеется выраженная строма


Puc.~2. Морфология аногенитальных маммаро-подобных желез: a — секреторный отдел и выводной проток, открывающийся на поверхность эпителия, при увеличении в 20 раз; b — секреторный отдел извитой структуры с ответвлениями при увеличении в 50 раз; b — секреторный отдел тубулярной структуры при увеличении в 50 раз

ток кубической формы в дольках. Вокруг желез имеется строма, состоящая из концентрически расположенных соединительнотканных волокон и варьирующая по плотности (рис. 1, 2). Протоки МПЖ открываются прямо на поверхность кожи в бороздке между малой и большой половыми губами. Эпителий протока представлен двумя рядами клеток — внутренним рядом призматических клеток и наруж-

ным, состоящим из миоэпителиальных клеток, последние присутствуют вплоть до внедрения протоков в эпидермис. Сравнение МПЖ, потовых и молочных желез (рис. 3, 4) представлено в таблице.

Puc. 3. Секреторные отделы апокринных желез: a — при увеличении в 40 раз; δ — при увеличении в 100 раз

Puc. 4. Морфология эккринных потовых желез: a — при увеличении в 50 раз; δ — при увеличении в 100 раз

Основные гистологические черты МПЖ и их сравнительная характеристика с потовыми и молочными железами

Параметр	Эккринные	Апокринные	Аногенитальные	Молочные
Размер секреторной части железы	Маленький	Большой	Большой, может варьировать	Большой
Форма секреторной части железы	Железистый клубочек, состоящий из спирально закрученных трубочек	Железистый клубочек, состоящий из спирально закрученных трубочек с более широким просветом, чем у эккринных желез	Секреторная часть более сложного строения, форма варьирует, могут быть короткие ответвления от основного протока с образованием альвеол, из которых формируются дольки (напоминающие дольки молочной железы)	Альвеолы, соединенные внутридольковыми протоками, образуют многочисленные дольки. Долька и внутридольковый терминальный проток образуют терминальную дольково-протоковую единицу

Параметр	Эккринные	Апокринные	Аногенитальные	Молочные
Место впадения протока	Поверхность кожи (акросирингиум)	Волосяной фолликул	Поверхность кожи аногенитальной области	Поверхность кожи соска
Размер и форма протока	Прямой и уз- кий в дерме. Штопоро- образный и узкий в эпи- дермисе (акро- сирингиум)	Прямой и узкий в дерме	Длинный и широкий, ближе к секреторной части спиралевидно закручивается	Широкий собирающий проток делится на более мелкие и узкие сегментарные, субсегментарные и терминальные протоки
Клеточный состав протока	Двухслойный эпителий кубической формы (миоэпителий отсутствует)*	Двухслойный эпителий кубической формы (миоэпителий отсутствует)*	Двухслойный эпителий: внутренний ряд — призматический эпителий, наружный ряд — миоэпителий	Многорядный шиповатый
Клеточный состав секреторной части	Внутренний ряд — железистый кубический или призматический эпителий (светлые и темные клетки). Наружный ряд — миоэпителий	Внутренний ряд — железистый кубический или призматический эпителий (крупные клетки) с апикальной секрецией. Наружный ряд — миоэпителий	Внутренний ряд — железистый призматический и кубический эпителий в дольковых структурах, призматический с апикальной секрецией в протоках, аналогичных терминальным дольковым протокам в молочной железе. Наружный ряд — миоэпителий	Внутренний ряд — 1-2 слоя кубического эпителия (может быть апокринизация). Наружный ряд — миоэпителий
Строма	Незначитель- но выражена, рыхлая	Незначитель- но выражена, рыхлая	Обильная, от рыхлой до плотной, часто с циркулярно расположенными фибробластами веретеновидной формы	Обильная, от рыхлой до плотной

Примечение: * — выводные протоки эккринных и апокринных потовых желез невозможно отличить микроскопически (но по А. Апатенко клетки протоков апокринных желез более эозинофильны в отличие от базофильных эккринных [32]). Иммуногистохимические исследования показали, что наружный слой эпителия протока, также называемый базальноклеточный, экспрессирует миоэпителиальные маркеры [33].

Обращает на себя внимание наличие циклических изменений эпителия и стромы вокруг желез. При этом процессе строма периодически увеличивается и уменьшается в объеме, происходит замена «старого» эпителия на «новый» с развитием ответвлений от основного протока («дивертикулов» [29]) и долек («ацинусов» [29]). Было высказано предположение, что мелкие протоки могут отпочковываются от эпителия основных протоков, что приводит к формированию истинных долек [29]. Формирование таких сателлитных протоков первого, второго и даже третьего порядков в виде «манжеты», окружающей главный проток, было описанов работе [34] как вариант нормального анатомического строения молочной железы.

МПЖ могут значительно варьировать по форме и количеству вне зависимости от возраста, начиная от наличия нескольких простых по форме желез у одних женщин до многочисленных сложных дольчатых желез у других. МПЖ обнаруживаются на глубине до 3,9 мм от зернистого слоя эпидермиса [35].

Как показали дальнейшие исследования, МПЖ могут экспрессировать рецепторы к прогестерону и эстрогенам [34-39], HMFG (human milk fat globulin), карциноэмбриональному антигену [СЕА] [29, 40], низкомолекулярному кератину [29], GCDFP-15 [36, 39] и др. [41]. Очевидно, что МПЖ отличаются от эккринных и апокриновых потовых желез типом эпителия, более сложным строением секреторной части, циклическими изменениями эпителия и стромы, а также экспрессией рецепторов к прогестерону и эстрогенам. С другой стороны, по этим же признакам, а также по типу кубического и цилиндрического эпителия в дольках и призматического с апикальной секрецией в протоках, аналогичных терминальным дольковым протокам в молочной железе, МПЖ в значительной степени имеют сходство с молочными железами. Кроме того, описанные в литературе многочисленные случаи развития добавочной лактирующей ткани молочной железы в аногенитальной области во время повторных беременностей свидетельствуют не о наследственном, а скорее о приобретенном характере данного процесса. МПЖ являются более вероятным источником возникновения данных патологических состояний, которые, возможно, являлись лактирующими аденомами из МПЖ, подобно случаю, описанному в работе [42].

Возможность развития добавочной ткани молочной железы из каудальной части молочной линии была поставлена под сомнение на основании нижеперечисленных наблюдений [29]:

- 1. Концепция молочной линии, проходящей через вульву к медиальной поверхности бедер, не базировалась на исследовании эмбрионов человека, а была основана на обнаружении в 1892 г. О. Шульцем молочных «гребней», идущих из подмышечных к паховым областям у эмбрионов свиней [6]. Он предположил, что наличие таких «гребней» вдоль молочной линии у эмбрионов человека может послужить объяснением феномена полимастии и полителии. Однако при исследованиях, проведенных на эмбрионах человека, подобная структура была обнаружена только в грудной и аксиллярной областях [3, 43-47]. В дальнейшем было показано, что зачаток, названный молочным гребнем, закладывается у эмбрионов человека до 30 мм длиной и простирается только до уровня пупочного тяжа в области зачатков грудных молочных желез, тогда как наружные половые органы начинают развиваться у эмбрионов гораздо позже из заново формирующейся ткани лабиоскротального возвышения [3]. Таким образом, уже у 12-миллиметрового эмбриона примордиумы молочной ткани и аногенитальной области широко отделены друг от друга пупочным тяжом. Тем не менее концепция молочных линий, идущих из подмышечных областей к внутренней поверхности бедер, поддерживается по настоящее время и иллюстрируется во многих статьях, атласах и учебниках.
- 2. Количество МПЖ значительно больше, чем можно было бы ожидать в случае рудиментарных образований из молочных гребней. По мнению С. Ван дер Путте, последовательность расположения желез и наличие их в перианальной области не исключает их взаимосвязи с клоакой, а не с линейно расположенными молочными гребнями.

30.05.2017 16:55:58

3. МПЖ отличаются от ткани молочной железы своей более простой конфигурацией по ультраструктурному строению — интердигитирующими мембранами, формированием мелких протоков и большим количеством секреторных гранул [48].

Все перечисленные обстоятельства свидетельствуют против теории возникновения эктопической ткани молочной железы в области вульвы из молочной линии. Описанные в литературе истинные дополнительные молочные железы вульвы [2, 3], возможно, имеют отношение к похожим случаям эктопических молочных желез, локализующихся на лице, спине и конечностях [5] — они существуют с рождения и представляют собой полностью сформированные уменьшенные копии грудных молочных желез.

Интерес, вызванный МПЖ как возможным источником некоторых процессов аногенитальной области, ранее не имевших достаточно достоверных версий возникновения, побудил к дальнейшему изучению их гистологического строения. Было обнаружено, что, аналогично коже соска молочной железы, эпителий верхней части выводных протоков МПЖ содержит клетки Токера [49]. Наличие необычных светлых клеток в эпидермисе примерно у 12% гистологически нормальных сосков молочных желез у людей обоих полов было впервые описано в 1970 г. С. Токером [50]. Эти клетки имеют характерные цитологические черты: круглое ядро со скудным хроматином и светлую или оптически прозрачную цитоплазму, и практически в 100% случаев экспрессируют СК7 [51, 52].

Использование антитела СК7 позволило выявить клетки Токера в 83 % случаев из сосков, полученных из аутопсийного материала [51]. Они могут располагаться по одиночке, скоплениями и формировать тубулярные структуры в эпидермисе. Данные структуры, располагающиеся как в базальном, так и более высоких слоях эпидермиса, образованы одним слоем светлых клеток [50]. Было предположено, что клетки Токера являются интраэпидермальными железистыми клетками, возникающими вследствие распространения в эпидермис клеток выводного протока [52] или предшественников железистых эпителиальных клеток в эпидермис [53]. С. Токер предположил, что эти клетки могут быть источником болезни Педжета в тех единичных случаях, когда поражение соска молочной железы не сопровождается наличием подлежащей интрадуктальной карциномы [50]. Наличие клеток Токера было также обнаружено в эпидермисе дополнительных сосков молочных желез у пациентов с полителией [54].

В 2005 г. в исследовании [49] и соавторов было показано, что светлые клетки, идентичные по цитологическим и иммуногистохимическим характеристикам клеткам Токера, содержатся по одиночке или небольшими скоплениями в нижней части эпидермиса вокруг открывающихся на поверхность протоков МПЖ и в верхней части эпителия протоков. В 2011 г. С. Ван дер Путте показал, что клетки Токера формируются после 12-й недели гестации [55]. Поскольку морфологически клетки Токера являются доброкачественным аналогом злокачественных клеток Педжета, они представляют интерес как возможный источник первичной интраэпидермальной экстрамаммарной болезни Педжета.

Таким образом, МПЖ вульвы, впервые описанные как железы, располагающиеся в норме в бороздке между малой и большой половыми губами, имеют промежуточное гистологическое строение между молочными и потовыми железами. Эпителий протока МПЖ идентичен эпителию протоков молочной железы. МПЖ

открываются прямо на поверхность эпидермиса и не ассоциированы с сально-волосяным аппаратом. Эпителий протоков МПЖ содержит клетки Токера. Эмбриональное развитие МПЖ, их нормальная и патологическая анатомия, а также функции МПЖ требуют дальнейшего изучения.

References

- 1. Afanas'ev Iu. I., Iurina N. A., Kotovskii E. F. Gistologiia, embriologiia, tsitologiia [Histhology, embryology, cytology]. Moscow, Medicina Publ., 1989, 672 p. (In Russian)
 - 2. Hartung E. Ueber einen Fall von Mamma accessoria. Inaug. Dissert. Erlangen, 1872, 31 s.
- 3. Van der Putte S. Mammary-like glands of the vulva and their disorders. *Int. J. Gynecol. Pathol.*, 1994, vol. 13, pp. 150–160.
 - 4. Darwin C. Descent of man and selection in relation to sex. London, 1896, pp. 36-39.
 - 5. Deaver J., McFarland J. The breast, its anomalies, its disease and their treatment. London, 1918, 104 p.
- 6. Schultze O. Milchdrusenentwickelung und polymastie. Sitzungs-Berichte der Phys.-Med. Gesellschaft zu Wurzburg, 1892, no. 26, pp. 77–85.
 - 7. Bell J. Supernumerary breast near labium. Am. J. Obstet. Gynecol., 1926, vol. 11, pp. 507–509.
 - 8. Purves R. Accessory breast in the labia majora. Br. J. Surg., 1928, vol. 15, pp. 279–281.
 - 9. McFarland J. Mammary gland situated on the labium majus. Arch. Pathol., 1931, vol. 11, pp. 236-240.
- 10. Bergner E. A case of a milk cyst in the labium majus. *Acta Obstet. Gynecol. Scand.*, 1933, vol. 14, pp. 205–206.
- 11. Mengert W. Supernumerary mammary gland tissue on labia minora. *Am. J. Obstet. Gynecol.*, 1935, vol. 29, pp. 891–892.
- 12. Looney C., Reichman S., Noel O. Ectopic breast tissue: report of an unusual case. *Am. J. Surg.*, 1959, vol. 25, pp. 219–222.
- 13. Tow S.H., Shanmugratnam K. Supernumerary mammary gland in the vulva. *Br. Med. J.*, 1962, vol. 5314, pp. 1234–1236.
 - 14. Woodruff J., Seeds A. Benign and malignant lesions of the vulva. Br. Med. J., 1962, vol. 20, pp. 690-695.
 - 15. Chaphekar P., Wagh M. Breast-like tumor of the vulva. J. Postgrad. Med., 1967, vol. 13, pp. 87–88.
 - 16. Levin N., Diener R. Bilateral ectopic breast of the vulva. Obstet. Gynecol., 1968, vol. 32, pp. 274–276.
- 17. Garcia J., Verkauf B., Hochberg C., Ingram J. Aberrant breast tissue of the vulva. *Obstet. Gynecol.*, 1978, vol. 52, pp. 225–228.
- 18. Reeves K., Kaufman R. Vulvar ectopic breast tissue mimicking periclitoral abscess. *Am. J. Obstet. Gynecol.*, 1980, vol. 137, pp. 509–511.
- 19. Gugliotta P., Fibbi M. L., Fessia L., Canevini P., Bussolati G. Lactating supernumerary mammary gland tissue in the vulva. *Appl. Pathol.*, 1983, vol. 1, pp. 61–65.
- 20. Dubrausky V. Gestielte Zystenmamma auf der Basis einer Brustdrusennanlage in der rechten grossen Schamlippe. Zentralbl. Gynacol., 1960, no. 82, pp. 558–562.
- 21. Friedel R. Ein fibroadenoma einer nebenbrustdruse im rechten labium maius. Virch. Arch. Path. Anat., 1932, no. 286, pp. 62.
- 22. Fisher J. Fibroadenoma of supernumerary mammary gland tissue in vulva. *Am. J. Obstet. Gynecol.*, 1947, vol. 53, pp. 335–337.
- 23. Seigler A., Gordon R. Fibroadenoma in a supernumerary breast of the vulva. *Am. J. Obstet. Gynecol.*, 1951, vol. 62, pp. 1367–1369.
- 24. Rickert R. Intraductal papilloma arising in supernumerary vulvar breast tissue. *Obstet. Gynecol.*, 1980, vol. 55 (3 Suppl.), pp. 84S–87S.
- 25. Guerry R. L., Pratt-Thomas H. R. Carcinoma of supernumerary breast of vulva with bilateral mammary cancer. *Cancer*, 1976, vol. 38, pp. 2570–2574.
- 26. Woodworth H., Dockerty M., Wilson R. B. Papillary hidradenoma of the vulva: a clinicopathologic study of 69 cases. *Am. J. Obstet. Gynecol.*, 1971, vol. 10, pp. 501–508.
- 27. Novak E., Stevenson R. Śweat gland tumors of the vulva, benign (hidradenoma) abd malignant (adenocarcinoma). *J. Obstet. Gynaecol.*, 1945, vol. 50, pp. 641–659.
- 28. Meeker J., Neubecker R., Helwig E. Hidradenoma papilliferum. *Am. J. Clin. Pathol.*, 1962, vol. 37, pp. 182–195.
- 29. Van der Putte S. Anogenital "sweat" glands. Histology and pathology of a gland that may mimic mammary glands. *Am. J. Dermatopathol.*, 1991, vol. 13, pp. 557–567.

90

- 30. Kazakov D.V., Spagnolo D.V., Kacerovska D., Michal M. Lesions of anogenital mammary-like glands: an update. *Adv. Anat. Pathol.*, 2011, vol. 18, pp. 1–28.
- 31. Kazakov D., McKee P. H., Michal M., Kacerovska D. *Cutaneous Adnexal Tumors*. Philadelphia, 2012, 814 p.
- 32. Apatenko A. *Epitelial'nye opukholi i poroki razvitiia kozhi* [*Epithelial tumors and malformations of the skin*]. Moscow, Medicina Publ., 1973, 238 p. (In Russian)
- 33. Tsujita-Kyutoku M., Kiuchi K., Danbara N., Yuri T., Senzaki H., Tsubura A. p63 expression in normal human epidermis and epidermal appendages and their tumors. *J. Cutan. Pathol.*, 2003, vol. 30, pp. 11–17.
 - 34. Azzopardi J., Ahmed A., Millis R. Problems in breast pathology. London; Philadelphia, 1979, 466 p.
- 35. Konstantinova A. M., Kyrpychova L., Belousova I. E., Spagnolo D. V., Kacerovska D., Michal M., Kerl K., Kazakov D. V. Anogenital mammary-like glands: A study of their normal histology with emphasis on glandular depth, presence of columnar epithelial cells, and distribution of elastic fibers. *Am. J. Dermatopathol.*, 2016. In press.
- 36. Castro C., Deavers M. Ductal carcinoma in-situ arising in mammary-like glands of the vulva. *Int. J. Gynecol. Pathol.*, 2001, vol. 20 (3), pp. 277–283.
- 37. Kennedy D., Hermina M., Xanos E., Schink J., Hafez G. Infiltrating ductal carcinoma of the vulva. *Pathol. Res. Pract.*, 1997, vol. 193 (10), pp. 723–726.
- 38. Offidani A., Campanati A. Papillary hidradenoma: immunohistochemical analysis of steroid receptor profile with a focus on apocrine differentiation. *J. Clin. Pathol.*, 1999, vol. 52 (11), pp. 829–832.
- 39. Nishie W., Sawamura D., Mayuzumi M., Takahashi S., Shimizu H. Hidradenoma papilliferum with mixed histopathologic features of syringocystadenoma papilliferum and anogenital mammary-like glands. *J. Cutan. Pathol.*, 2004, vol. 31, pp. 561–564.
- 40. Kazakov D. V., Mikyskova I., Kutzner H., Simpson R. H., Hes O., Mukensnabl P., Bouda J., Zamecnik M., Kinkor Z., Michal M. Hidradenoma papilliferum with oxyphilic metaplasia: a clinicopathological study of 18 cases, including detection of human papillomavirus. *Am. J. Dermatopathol.*, 2005, vol. 27, pp. 102–110.
- 41. Konstantinova A.M., Stewart C.J., Kyrpychova L., Belousova I.E., Michal M., Kazakov D.V. An Immunohistochemical Study of Anogenital Mammary-Like Glands. *Am. J. Dermatopathol.*, 2016. In press.
- 42. O'Hara M., Page D. Adenomas of the breast and ectopic breast under lactational influences. *Hum. Pathol.*, 1985, vol. 16 (7), pp. 707–712.
- 43. Schmidt H. Ueber normale Huperthelie Menschlicher Embryonen. Anat. Anz., 1896, no. 11, pp.702–711.
- 44. Kallias E. Ein Fall von Milchleiste bei einem menschlichen Embryo. *Anat. Hefte.*, 1897, no. 8, pp.155–163.
- 45. Brouha T. Sur la bande et la crete mammaires et sur les pretendues ebaucher hypertheliales chez l'homme et le murin. *Anat. Anz.*, 1905, no. 27, pp. 462–464.
- 46. Lusting H. Zur Entwicklungsgeschichte der menschlichen Brustdrüse. Arch. Mik. Anat., 1915, no. 87, pp. 38–59.
 - 47. Neumann H., Oing M. Polymasthelie. Arch. Gynakol., 1929, vol. 138, pp. 494–542.
- 48. Van der Putte S. C. Ultrastructure of the human anogenital "sweat" gland. *Anat. Rec.*, 1993, vol. 235, pp. 583–590.
- 49. Willman J., Golitz L., Fitzpatrick J. Vulvar clear cells of Toker: precursors of extramammary Paget's disease. *Am. J. Dermatopathol.*, 2005, vol. 27 (3), pp. 185–188.
 - 50. Toker C. Clear cells of the nipple epidermis. Cancer, 1970, vol. 25, pp. 601–610.
- 51. Lundquist K., Kohler S., Rouse R. Intraepidermal cytokeratin 7 expression is not restricted to Paget cells but is also seen in Toker cells and Merkel cells. *Am. J. Surg. Pathol.*, 1999, vol. 23 (2), pp. 212–219.
- 52. Yao D.X., Hoda S.A., Chiu A., Ying L., Rosen P.P. Intraepidermal cytokeratin 7 immunoreactive cells in the non-neoplastic nipple may represent interepithelial extension of lactiferous duct cells. *Histopathology*, 2002, vol. 40 (3), pp. 230–236.
- 53. Guarner J., Cohen C., DeRose P. Histogenesis of extramammary and mammary Paget cells. An immunohistochemical study. *Am. J. Dermatopathol.*, 1989, vol. 11, pp. 313–318.
- 54. Willman J., Golitz L., Fitzpatrick J. Clear cells of Toker in accessory nipples. *J. Cutan. Pathol.*, 2003, vol. 30 (4), pp. 256–260.
- 55. Van der Putte S.C. Clear cells of Toker in the developing anogenital region of male and female fetuses. *Am. J. Dermatopathol.*, 2011, vol. 33, pp. 811–818.

Для цитирования: Константинова А.М., Белоусова И.Э., Кацеровска Д., Михал М., Шелехова К.В., Казаков Д.В. Морфология аногенитальных маммаро-подобных желез // Вестник СПбГУ. Медицина. 2017. Т. 12. Вып. 1. С. 83–93. DOI: 10.21638/11701/spbu11.2017.107

For citation: Konstantinova A. M., Belousova I. E., Kacerovska D., Michal M., Shelekhova K. V., Kazakov D. V. Morphology of anogenital mammary-like glands. *Vestnik SPbSU. Medicine*, 2017, vol. 12, issue 1, pp. 83–93. DOI: 10.21638/11701/spbu11.2017.107

Статья поступила в редакцию 30 октября 2016 г.; принята в печать 13 декабря 2016 г.

Контактная информация:

Константинова Анастасия Михайловна — кандидат медицинских наук; anastasia.konstantynova@gmail.com

Белоусова Ирена Эдуардовна — доктор медицинских наук, доцент; irena.belousova@mail.ru *Кацеровска Дениса* — PhD; kacerovska@medima.cz

Muxaл Muxaл — профессор; michal@medima.cz

Шелехова Ксения Владимировна — доктор медицинских наук, доцент; kshelekhova@mail.ru Казаков Дмитрий Вениаминович — PhD, профессор; kazakov@medima.cz

Konstantinova Anastasia M. — PhD; anastasia.konstantynova@gmail.com

Belousova Irena E. — MD, Associate professor; irena.belousova@mail.ru

Kacerovska Denisa — PhD; kacerovska@medima.cz

Michal Michal — Professor; michal@medima.cz

Shelekhova Ksenya V. — MD, Associate Professor; kshelekhova@mail.ru

Kazakov Dmitry V. — PhD, Professor; kazakov@medima.cz